1. AtmoFlow - Investigation of Atmospheric-Like Fluid Flows Under Microgravity Conditions.
- Author
-
Zaussinger, F., Canfield, P., Froitzheim, A., Travnikov, V., Haun, P., Meier, M., Meyer, A., Heintzmann, P., Driebe, T., and Egbers, Ch.
- Abstract
The main objective of the AtmoFlow experiment is the investigation of convective flows in the spherical gap geometry. Gaining fundamental knowledge on the origin and behavior of flow phenomena such as global cells and planetary waves is interesting not only from a meteorological perspective. Understanding the interaction between atmospheric circulation and a planet's climate, be it Earth, Mars, Jupiter, or a distant exoplanet, contributes to various fields of research such as astrophysics, geophysics, fluid physics, and climatology. AtmoFlow aims to observe flows in a thin spherical gap that are subjected to a central force-field. The Earth's own gravitational field interferes with a simulated central force-field with the given parameters of the model which makes microgravity conditions of g < 1 0 − 3 g 0 (e.g. on the ISS) necessary. Without losing its overall view on the complex physics, circulation in planetary atmospheres can be reduced to a simple model of a central gravitational field, the incoming and outgoing energy (e.g. radiation) and rotational effects. This strongly simplified assumption makes it possible to break some generic cases down to test models which can be investigated by laboratory experiments and numerical simulations. Varying rotational rates and temperature boundary conditions represent different types of planets. This is a very basic approach, but various open questions regarding local pattern formation or global planetary cells can be investigated with that setup. A concept has been defined for developing a payload that could be installed and utilized on-board the International Space Station (ISS). This concept is based on the microgravity experiment GeoFlow, which has been conducted successfully between 2008 and 2016 on the ISS. This paper addresses the scientific goals, the experimental setup, the concept for implementation of the AtmoFlow experiment on the ISS and first numerical results. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF