1. Nd3+ Sensitized Up/Down Converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm.
- Author
-
Xiaomin Li, Rui Wang, Fan Zhang, Lei Zhou, Dengke Shen, Chi Yao, and Dongyuan Zhao
- Subjects
ELECTRIC properties of nanostructured materials ,QUANTUM optics ,PHOTON collisions ,VOLTAGE-frequency converters ,ELECTRIC power conversion ,ELECTRIC lighting control - Abstract
Core/shell1/shell2/shell3 structured NaGdF
4 :Nd/NaYF4 /NaGdF4 :Nd,Yb,Er/NaYF4 nanocrystals were well designed and synthesized, each of the parts assume respective role and work together to achieve dual-mode upconverting (UC) and downconverting (DC) luminescence upon the low heat effect 800-nm excitation. Nd3+ , Yb3+ , Er3+ tri-doped NaGdF4 :Nd,Yb,Er UC layer [NIR (800 nm)-to-Visible (540 nm)] with a constitutional efficient 800 nm excitable property were achieved for the in-vitro bioimaging with low auto-fluorescence and photo-damage effects. Moreover, typical NIR (800 nm)-to-NIR (860-895 nm) DC luminescence of Nd3+ has also been realized with this designed nanostructure. Due to the low heat effect, high penetration depth of the excitation and the high efficiency of the DC luminescence, the in-vivo high contrast DC imaging of a whole body nude mouse was achieved. We believe that such dual-mode luminescence NCs will open the door to engineering the excitation and emission wavelengths of NCs and will provide a new tool for a wide variety of applications in the fields of bioanalysis and biomedical. [ABSTRACT FROM AUTHOR]- Published
- 2013
- Full Text
- View/download PDF