Shi, Jiabin, Chen, Piao, Zhu, Minming, Chen, Huihui, Si, Jinping, and Wu, Lingshang
Background and Aims: Polygonatum, a classic source of food and traditional medicine, possess great potential and applicability in combating chronic and hidden hunger. To study the relationship between the selected Polygonatum -associated microbiome and the fitness of the host plants.The microbial communities were investigated using a high-throughput sequencing method. Their association with the soil chemical properties and Polygonatum adaptation ability were elucidated.P. kingianum var. grandifolium (PG) was more adaptive than P. kingianum (PK) or P. sibiricum (PS) due to the highest rhizome fresh weight (RFW) and polysaccharide content (PSC) (P < 0.05). RFW and PSC reached the highest when the pH was 7.48 – 7.95 and showed a significant reduction with the soil acidification. The diversity, community structure, and composition of the rhizospheric microbiota were more significantly affected by Polygonatum than those of the endosphere. The microbial diversity and richness in the rhizosphere soils of PG were higher. Specific microorganisms were related to both the yield and quality of Polygonatum and the soil chemical properties; the highest for PG was associated with the beneficial microorganisms such as, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium and Talaromyces in the rhizospheric soil while the low yield and poor quality of PK and PS were linked with the pathogenic microorganisms such as Pseudomonas, Fusarium, Neocosmospora, and Tausonia.The adaptability of the Polygonatum genotypes was closely related to the soil pH, which may connect with the growth of either beneficial or pathogenic microorganisms in the rhizosphere, thereby affecting the growth and quality of Polygonatum.Methods: Polygonatum, a classic source of food and traditional medicine, possess great potential and applicability in combating chronic and hidden hunger. To study the relationship between the selected Polygonatum -associated microbiome and the fitness of the host plants.The microbial communities were investigated using a high-throughput sequencing method. Their association with the soil chemical properties and Polygonatum adaptation ability were elucidated.P. kingianum var. grandifolium (PG) was more adaptive than P. kingianum (PK) or P. sibiricum (PS) due to the highest rhizome fresh weight (RFW) and polysaccharide content (PSC) (P < 0.05). RFW and PSC reached the highest when the pH was 7.48 – 7.95 and showed a significant reduction with the soil acidification. The diversity, community structure, and composition of the rhizospheric microbiota were more significantly affected by Polygonatum than those of the endosphere. The microbial diversity and richness in the rhizosphere soils of PG were higher. Specific microorganisms were related to both the yield and quality of Polygonatum and the soil chemical properties; the highest for PG was associated with the beneficial microorganisms such as, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium and Talaromyces in the rhizospheric soil while the low yield and poor quality of PK and PS were linked with the pathogenic microorganisms such as Pseudomonas, Fusarium, Neocosmospora, and Tausonia.The adaptability of the Polygonatum genotypes was closely related to the soil pH, which may connect with the growth of either beneficial or pathogenic microorganisms in the rhizosphere, thereby affecting the growth and quality of Polygonatum.Results: Polygonatum, a classic source of food and traditional medicine, possess great potential and applicability in combating chronic and hidden hunger. To study the relationship between the selected Polygonatum -associated microbiome and the fitness of the host plants.The microbial communities were investigated using a high-throughput sequencing method. Their association with the soil chemical properties and Polygonatum adaptation ability were elucidated.P. kingianum var. grandifolium (PG) was more adaptive than P. kingianum (PK) or P. sibiricum (PS) due to the highest rhizome fresh weight (RFW) and polysaccharide content (PSC) (P < 0.05). RFW and PSC reached the highest when the pH was 7.48 – 7.95 and showed a significant reduction with the soil acidification. The diversity, community structure, and composition of the rhizospheric microbiota were more significantly affected by Polygonatum than those of the endosphere. The microbial diversity and richness in the rhizosphere soils of PG were higher. Specific microorganisms were related to both the yield and quality of Polygonatum and the soil chemical properties; the highest for PG was associated with the beneficial microorganisms such as, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium and Talaromyces in the rhizospheric soil while the low yield and poor quality of PK and PS were linked with the pathogenic microorganisms such as Pseudomonas, Fusarium, Neocosmospora, and Tausonia.The adaptability of the Polygonatum genotypes was closely related to the soil pH, which may connect with the growth of either beneficial or pathogenic microorganisms in the rhizosphere, thereby affecting the growth and quality of Polygonatum.Conclusion: Polygonatum, a classic source of food and traditional medicine, possess great potential and applicability in combating chronic and hidden hunger. To study the relationship between the selected Polygonatum -associated microbiome and the fitness of the host plants.The microbial communities were investigated using a high-throughput sequencing method. Their association with the soil chemical properties and Polygonatum adaptation ability were elucidated.P. kingianum var. grandifolium (PG) was more adaptive than P. kingianum (PK) or P. sibiricum (PS) due to the highest rhizome fresh weight (RFW) and polysaccharide content (PSC) (P < 0.05). RFW and PSC reached the highest when the pH was 7.48 – 7.95 and showed a significant reduction with the soil acidification. The diversity, community structure, and composition of the rhizospheric microbiota were more significantly affected by Polygonatum than those of the endosphere. The microbial diversity and richness in the rhizosphere soils of PG were higher. Specific microorganisms were related to both the yield and quality of Polygonatum and the soil chemical properties; the highest for PG was associated with the beneficial microorganisms such as, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium and Talaromyces in the rhizospheric soil while the low yield and poor quality of PK and PS were linked with the pathogenic microorganisms such as Pseudomonas, Fusarium, Neocosmospora, and Tausonia.The adaptability of the Polygonatum genotypes was closely related to the soil pH, which may connect with the growth of either beneficial or pathogenic microorganisms in the rhizosphere, thereby affecting the growth and quality of Polygonatum.Graphical Abstract: Polygonatum, a classic source of food and traditional medicine, possess great potential and applicability in combating chronic and hidden hunger. To study the relationship between the selected Polygonatum -associated microbiome and the fitness of the host plants.The microbial communities were investigated using a high-throughput sequencing method. Their association with the soil chemical properties and Polygonatum adaptation ability were elucidated.P. kingianum var. grandifolium (PG) was more adaptive than P. kingianum (PK) or P. sibiricum (PS) due to the highest rhizome fresh weight (RFW) and polysaccharide content (PSC) (P < 0.05). RFW and PSC reached the highest when the pH was 7.48 – 7.95 and showed a significant reduction with the soil acidification. The diversity, community structure, and composition of the rhizospheric microbiota were more significantly affected by Polygonatum than those of the endosphere. The microbial diversity and richness in the rhizosphere soils of PG were higher. Specific microorganisms were related to both the yield and quality of Polygonatum and the soil chemical properties; the highest for PG was associated with the beneficial microorganisms such as, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium and Talaromyces in the rhizospheric soil while the low yield and poor quality of PK and PS were linked with the pathogenic microorganisms such as Pseudomonas, Fusarium, Neocosmospora, and Tausonia.The adaptability of the Polygonatum genotypes was closely related to the soil pH, which may connect with the growth of either beneficial or pathogenic microorganisms in the rhizosphere, thereby affecting the growth and quality of Polygonatum. [ABSTRACT FROM AUTHOR]