1. Applying MCM-48 mesoporous material, equilibrium, isotherm, and mechanism for the effective adsorption of 4-nitroaniline from wastewater.
- Author
-
Ali, Nisreen S., Harharah, Hamed N., Salih, Issam K., Cata Saady, Noori M., Zendehboudi, Sohrab, and Albayati, Talib M.
- Subjects
ENERGY dispersive X-ray spectroscopy ,PHYSISORPTION ,PORE size distribution ,ADSORPTION isotherms ,ADSORPTION (Chemistry) ,MESOPOROUS materials - Abstract
In this work, the MCM-48 mesoporous material was prepared and characterized to apply it as an active adsorbent for the adsorption of 4-nitroaniline (4-Nitrobenzenamine) from wastewater. The MCM-48 characterizations were specified by implementing various techniques such as; scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area, pore size distribution (PSD), and Fourier transform infrared (FTIR). The batch adsorption results showed that the MCM-48 was very active for the 4-nitroaniline adsorption from wastewater. The adsorption equilibrium results were analyzed by applying isotherms like Langmuir, Freundlich, and Temkin. The maximum experimental uptake according to type I Langmuir adsorption was found to be 90 mg g
−1 approximately. The Langmuir model with determination coefficient R2 = 0.9965 is superior than the Freundlich model R2 = 0.99628 and Temkin model R2 = 0.9834. The kinetic adsorption was investigated according to pseudo 1st order, pseudo 2nd order, and Intraparticle diffusion model. The kinetic results demonstrated that the regression coefficients are so high R2 = 0.9949, that mean the pseudo 2nd order hypothesis for the adsorption mechanism process appears to be well-supported. The findings of adsorption isotherms and kinetics studies indicate the adsorption mechanism is a chemisorption and physical adsorption process. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF