We investigate the degree spectra of computable relations on canonically ordered natural numbers (ω,<)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\omega ,<)$$\end{document} and integers (ζ,<)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\zeta ,<)$$\end{document}. As for (ω,<)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\omega ,<)$$\end{document}, we provide several criteria that fix the degree spectrum of a computable relation to all c.e. or to all Δ2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta _2$$\end{document} degrees; this includes the complete characterization of the degree spectra of so-called computable block functions that have only finitely many types of blocks. Compared to Bazhenov et al. (in: LIPIcs, vol 219, pp 8:1–8:20, 2022), we obtain a more general solution to the problem regarding possible degree spectra on (ω,<)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\omega ,<)$$\end{document}, answering the question whether there are infinitely many such spectra. As for (ζ,<)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\zeta ,<)$$\end{document}, we prove the following dichotomy result: given an arbitrary computable relation R on (ζ,<)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\zeta ,<)$$\end{document}, its degree spectrum is either trivial or it contains all c.e. degrees. This result, and the proof techniques required to solve it, extend the analogous theorem for (ω,<)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\omega ,<)$$\end{document} obtained by Wright (Computability 7:349–365, 2018), and provide initial insight to Wright’s question whether such a dichotomy holds on computable ill-founded linear orders. This article is an extended version of Bazhenov et al. (in: LIPIcs, vol 219, pp 8:1–8:20, 2022). [ABSTRACT FROM AUTHOR]