1. Enzyme Activity of Culturable Fungi and Bacteria Isolated from Traditional Agarwood Fermentation Basin Indicate Temporally Significant Lignocellulosic and Lipid Substrate Modulations.
- Author
-
Naziz, Pearlin Shabna, Das, Runima, and Sen, Supriyo
- Subjects
- *
LIGNOCELLULOSE , *XYLANASES , *BIOCHEMICAL substrates , *FERMENTATION , *LIPIDS , *BACILLUS megaterium - Abstract
Agarwood oil is one of the costliest essential oils used in perfumery, medicine and aroma. Production of the oil traditionally involves a soaking/fermentation step. Studies have indicated a definite role of the diverse microorganisms growing during the open soaking step, and in the emergent aroma of the essential oil. However, the temporal nature of fermentation and a key functional aspect i.e., the enzymatic properties of the microbes from the fermentation basin have not been studied yet. A total of 20 bacteria and 14 fungi isolated from fermentation basins located in Assam, India, at different soaking periods classified as early (0–20 days), medium (20–40 days) and late (40–60 days) clearly pointed towards an early fungal domination followed by succession of bacteria. The physico-chemical transformations of the wood are controlled by enzymatic properties (cellulase, xylanase, amylase and lipase) of the isolates. The results indicated a strong lignocellulosic substrate modulation potential in the four isolates, viz- Purpureocillium lilacinum (0.354 mg/mL), Mucor circinelloides (0.331 mg/mL), Penicillium citrinum (0.324 mg/mL) and Bacillus megaterium (0.152 mg/mL). The highest culturable abundance (CFU/mL) was found in M. circinelloides (2 × 109) among fungi and B. megaterium (4.5 × 109) among bacteria. The highest cellulase activity was shown by P. lilacinum (0.354 mg/mL) while xylanase and lipase by M. circinelloides (0.873 and 0.128 mg/mL). An interesting revelation was that a substantial proportion of the isolates (70% bacteria and 78% fungi) were positive for lipase activity. This is the first report on the "culturable microbiome" of the agarwood fermentation basin from a temporal and functional bioactivity perspective. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF