1. Benchmark Proposal for the FVCA8 Conference: Finite Volume Methods for the Stokes and Navier–Stokes Equations
- Author
-
Franck Boyer, Pascal Omnes, Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Analyse, Géométrie et Applications (LAGA), and Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
- Subjects
general meshes ,MSC (2010): 65M08, 65N08, 76D05, 76D07 ,Finite volume method ,Computer science ,Benchmark ,Finite volume methods ,Physics::Fluid Dynamics ,incompressible fluids ,Pressure-correction method ,Incompressible flow ,Robustness (computer science) ,Hagen–Poiseuille flow from the Navier–Stokes equations ,Compressibility ,Applied mathematics ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Statistical physics ,Navier-Stokes equations ,Navier–Stokes equations ,Reynolds-averaged Navier–Stokes equations ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
FVCA 2017 : International Conference on Finite Volumes for Complex Applications; This benchmark proposes test-cases to assess innovative finite volume type methods developped to solve the equations of incompressible fluid mechanics. Emphasis is set on the ability to handle very general meshes, on accuracy, robustness and computational complexity. Two-dimensional as well as three-dimensional tests with known analytical solutions are proposed for the steady Stokes and both steady and unsteady Navier-Stokes equations, as well as classical lid-driven cavity tests.
- Published
- 2017
- Full Text
- View/download PDF