1. Local Generic Position for Root Isolation of Zero-Dimensional Triangular Polynomial Systems
- Author
-
Jin-San Cheng, Elias P. Tsigaridas, Jia Li, Beijing Electronic Science and Technology Institute, Key Laboratory of Mathematics Mechanization (KLMM), Chinese Academy of Sciences [Changchun Branch] (CAS)-Institute of Systems Science (ISS), China-Academy of Mathematics and Systems Science [Beijing]-Chinese Academy of Sciences [Changchun Branch] (CAS)-Institute of Systems Science (ISS), China-Academy of Mathematics and Systems Science [Beijing], Chinese Academy of Sciences [Changchun Branch] (CAS)-Institute of Systems Science (ISS), China-Academy of Mathematics and Systems Science [Beijing], Polynomial Systems (PolSys), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), and W. Koepf and E.Vorozhtsov
- Subjects
[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC] ,Discrete mathematics ,Polynomial ,Real roots ,010102 general mathematics ,Zero (complex analysis) ,0102 computer and information sciences ,01 natural sciences ,Matrix polynomial ,Root isolation ,010201 computation theory & mathematics ,Position (vector) ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,Applied mathematics ,0101 mathematics ,Mathematics - Abstract
International audience; We present an algorithm based on local generic position (LGP) to isolate the complex or real roots and their multiplicities of a zero-dimensional triangular polynomial system. The Boolean complexity of the algorithm for computing the real roots is single exponential: $\tilde{\mathcal {O}}_B(N^{n^2})$, where $N=\max\{d,\tau\}$, $d$ and $\tau$, is the degree and the maximum coefficient bitsize of the polynomials, respectively, and $n$ is the number of variables.
- Published
- 2012
- Full Text
- View/download PDF