1. Instance-Specific Augmentation of Brain MRIs with Variational Autoencoders
- Author
-
Middleton, Jon Anthony, Bauer, Marko, Johansen, Jacob, Nielsen, Mads, Sommer, Stefan Horst, Pai, Akshay Sadananda Uppinakudru, Middleton, Jon Anthony, Bauer, Marko, Johansen, Jacob, Nielsen, Mads, Sommer, Stefan Horst, and Pai, Akshay Sadananda Uppinakudru
- Abstract
Spatial data augmentation is a standard technique for regularizing deep segmentation networks that are tasked with localizing medical abnormalities. However, a typical spatial augmentation scheme is built upon ad hoc selections of spatial transformation parameters which are not determined by the data set and therefore may not capture spatial variations in the data. For segmentation networks trained in the low-data regime, these ad hoc transformation techniques often fail to encourage better generalization. To address this problem, we propose a variational autoencoder framework for spatial data augmentation. We show how this framework provides a natural, data-driven approach to probabilistic, instance-specific spatial augmentation. Further, we observe that U-Nets trained on data augmented using this framework compare favorably with U-Nets trained using standard spatial augmentation methods.
- Published
- 2023