1. Density functional theory investigation of the contributions of π-π stacking and hydrogen bonding with water to the supramolecular aggregation interactions of model asphaltene heterocyclic compounds.
- Author
-
Lessa MD, Stoyanov SR, de Carneiro JWM, and da Costa LM
- Abstract
Context: A complex supramolecular process involving electrostatic and dispersion interactions and asphaltene aggregation is associated with detrimental petroleum deposition and scaling that pose challenges to petroleum recovery, transportation, and upgrading. The homodimers of seven heterocyclic model compounds, representative of moieties commonly found in asphaltene structures, were studied: pyridine, thiophene, furan, isoquinoline, pyrazine, thiazole, and 1,3-oxazole. The contributions of hydrogen bonding involving water bridges spanning between dimers and π-π stacking to the total interaction energy were calculated and analyzed. The distance between the planes of the aromatic rings is correlated with the π-π stacking interaction strength. All the dimerization reactions were exothermic, although not spontaneous. This was mostly modulated by the strength of the hydrogen bond of the water bridge and the π-π stacking interaction. Dimers bridged by two water molecules were more stable than those with additional water molecules or without any water molecule in the bridge. Energy decomposition analysis showed that the electrostatic and polarization components were the main stabilizing terms for the hydrogen bond interaction in the bridge, contributing at least 80% of the interaction energy in all dimers. The non-covalent interaction analysis confirmed the molecular sites that had the strongest (hydrogen bond) and weak (π-π stacking) attractive interactions. They were concentrated in the water bridge and in the plane between the aromatic rings, respectively., Methods: The density functional ωB97X-D with a dispersion correction and the Def2-SVP basis set were employed to investigate supramolecular aggregates incorporating heterocycles dimers with 0, 1, 2, and 3 water molecules forming a stabilizing bridge connecting the monomers. The non-covalent interactions were analyzed using the NCIplot software and plotted as isosurface maps using Visual Molecular Dynamics., (© 2024. Crown.)
- Published
- 2024
- Full Text
- View/download PDF