1. On-off Fluorescent Switching of Excitation-independent Near-ultraviolet Emission Carbon Nanobelts for Ultrasensitive Detection Nimesulide in Pharmaceutical Tablet.
- Author
-
Wang Z, Gao Y, Wang W, Kong F, Li H, Fan D, and Wang W
- Subjects
- Linear Models, Sulfonamides chemistry, Tablets chemistry, Carbon chemistry, Limit of Detection, Nanostructures chemistry, Spectrometry, Fluorescence, Sulfonamides analysis, Ultraviolet Rays
- Abstract
Here, we present an excellent strategy of unmodified near-ultraviolet fluorescence nitrogen doping carbon nanobelts (NFNCBs) for detecting nimesulide (Nim). After a simple hydrothermal process of uric acid and hydroquinone in DMF solvent, NFNCBs shows the shape of corroded stalactite-like composed of nanobelts aggregates, near-ultraviolet luminescence and a narrowed full width at half maximum. This could improve/change the electronic properties and surface chemical active site, as the result of a sensitive response to Nim. By employing this sensor, the quantitative measurement displays a linear range of 2.0 nM - 100.0 μM with a lower detection limit of 0.21 nM (3σ/k) for Nim. Our work has provided a high selectivity for Nim, which may be capable for pharmaceutical sample analysis in real tablets. Furthermore, the results concerning the recoveries (96.3 - 106.2%) for real sample analysis indicate that this nanoprobe might expand a good avenue to design an effective luminescence nanoprobe for other biologically related drugs.
- Published
- 2020
- Full Text
- View/download PDF