1. Rainfall projections under different climate scenarios over the Kaduna River Basin, Nigeria
- Author
-
Gloria Chinwendu Okafor, Kingsley N. Ogbu, Jacob Agyekum, Andrew Manoba Limantol, and Isaac Larbi
- Subjects
CMIP5 ,Extreme event ,Emission scenarios ,Kaduna River ,Rainfall projection ,Environmental sciences ,GE1-350 - Abstract
Abstract This research aimed to assess changes in mean and extreme rainfall within the Kaduna River Basin (KRB), specifically examining the implications of two Representative Concentration Pathways (RCPs)—4.5 and 8.5 scenarios. Employing a quantile mapping technique, this study corrected inherent biases in four Regional Climate Models, enabling the examination of mean precipitation and six indices capturing extreme precipitation events for the 2050s. These findings were compared against a historical reference period spanning from 1981 to 2010, considering the basin's upstream and downstream segments. Results revealed an average annual rainfall reduction under scenarios 4.5 (21.39%) and 8.5 (20.51%) across the basin. This decline exhibited a more pronounced impact on monthly rainfall during the wet season (April to October) compared to the dry season (November to March). Notably, a substantial decrement in wet indices, excluding consecutive wet days (CWD), was foreseen in both seasons for the upstream and downstream areas, signalling an impending drier climate. The anticipated rise in consecutive dry days (CDD) is poised to manifest prominently downstream attributed to global warming-induced climate change brought on by increased anthropogenic emissions of greenhouse gases. These findings accentuate a heterogeneous distribution of extreme rainfall, potentially leading to water scarcity issues throughout the KRB, especially impacting upstream users. Moreover, the projections hint at an increased risk of flash floods during intense wet periods. Consequently, this study advocates the implementation of targeted disaster risk management strategies within the KRB to address these foreseeable challenges.
- Published
- 2024
- Full Text
- View/download PDF