1. A miniaturized chip for 3D optical imaging of tissue regeneration in vivo
- Author
-
Claudio Conci, Emanuela Jacchetti, Laura Sironi, Lorenzo Gentili, Giulio Cerullo, Rebeca Martínez Vázquez, Roberto Osellame, Mario Marini, Margaux Bouzin, Maddalena Collini, Laura D'Alfonso, Elmina Kabouraki, Maria Farsari, Anthi Ranella, Nikos Kehagias, Giuseppe Chirico, Manuela Teresa Raimondi, Popp, J, Gergely, C, Conci, C, Jacchetti, E, Sironi, L, Gentili, L, Cerullo, G, Martinez, R, Osellame, R, Marini, M, Bouzin, M, Collini, M, D'Alfonso, L, Kabouraki, E, Farsari, M, Ranella, A, Kehagias, N, Chirico, G, and Raimondi, M
- Subjects
two-photon polymerization ,3D-microstructured scaffold ,elasto-mechanic ,in vivo implant ,ex ovo implant ,intravital imaging window ,confocal microscopy ,two-photon imaging - Abstract
The current protocols for biocompatibility assessment of biomaterials, based on histopathology, require the sacrifice of a huge number of laboratory animals with an unsustainable ethical burden and remarkable cost. Intravital microscopy techniques can be used to study implantation outcomes in real time though with limited capabilities of quantification in longitudinal studies, mainly restricted by the light penetration and the spatial resolution in deep tissues. We present the outline and first tests of a novel chip which aims to enable longitudinal studies of the reaction to the biomaterial implant. The chip is composed of a regular reference microstructure fabricated via two-photon polymerization in the SZ2080 resist. The geometrical design and the planar raster spacing largely determine the mechanical and spectroscopic features of the microstructures. The development, in-vitro characterization and in vivo validation of the Microatlas is performed in living chicken embryos by fluorescence microscopy 3 and 4 days after the implant; the quantification of cell infiltration inside the Microatlas demonstrates its potential as novel scaffold for tissue regeneration.
- Published
- 2022