1. Quasineutral limit for Vlasov-Poisson with Penrose stable data
- Author
-
Daniel Han-Kwan, Frédéric Rousset, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Han-Kwan, Daniel, and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Physics ,General Mathematics ,010102 general mathematics ,Mathematical analysis ,Dirac (software) ,Vlasov equation ,Poisson distribution ,01 natural sciences ,Stability (probability) ,010101 applied mathematics ,Sobolev space ,symbols.namesake ,Mathematics - Analysis of PDEs ,Distribution (mathematics) ,Physics::Plasma Physics ,Physics::Space Physics ,symbols ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Variable (mathematics) - Abstract
International audience; We study the quasineutral limit of a Vlasov-Poisson system that describes the dynamics of ions in a plasma. We handle data with Sobolev regularity under the sharp assumption that the profile of the initial data in the velocity variable satisfies a Penrose stability condition. As a by-product of our analysis, we obtain a well-posedness theory for the limit equation (which is a Vlasov equation with Dirac distribution as interaction kernel) for such data.
- Published
- 2016
- Full Text
- View/download PDF