1. Topological effects and conformal invariance in long-range correlated random surfaces
- Author
-
Alberto Rosso, Raoul Santachiara, Sebastian Grijalva, Nina Javerzat, Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
High Energy Physics - Theory ,invariance: conformal ,family ,Critical phenomena ,General Physics and Astronomy ,FOS: Physical sciences ,random surface ,torus ,anisotropy ,Topology ,integrability ,01 natural sciences ,percolation ,fractal ,Critical line ,Conformal symmetry ,Lattice (order) ,0103 physical sciences ,site ,surface ,universality ,structure ,0101 mathematics ,010306 general physics ,cluster ,Condensed Matter - Statistical Mechanics ,Mathematical Physics ,lattice ,Physics ,field theory: conformal ,Statistical Mechanics (cond-mat.stat-mech) ,Conformal field theory ,010102 general mathematics ,scaling ,correlation: long-range ,Torus ,Mathematical Physics (math-ph) ,critical phenomena ,Renormalization group ,effect: topological ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,lcsh:QC1-999 ,Universality (dynamical systems) ,High Energy Physics - Theory (hep-th) ,tensor: energy-momentum ,lcsh:Physics - Abstract
We consider discrete random fractal surfaces with negative Hurst exponent $H, Comment: 35 pages. Replacement takes into account the comments of the two SciPost referees, which can be found at https://scipost.org/submissions/2005.11830v1/#report_1
- Published
- 2020
- Full Text
- View/download PDF