1. Psoriasis detection using skin color and texture features
- Author
-
Abbadi, Nidhal K. Al, Dahir, Nizar Saadi, Dhalimi, Muhsin A. AL-, and Restom, Hind
- Subjects
Neural networks -- Methods ,Algorithms -- Research ,Psoriasis -- Diagnosis ,Computer-aided medical diagnosis -- Methods ,Neural network ,Algorithm ,Computers - Abstract
Problem statement: In this study a skin disease diagnosis system was developed and tested. The system was used for diagnosis of psoriases skin disease. Approach: Present study relied on both skin color and texture features (features derives from the GLCM) to give a better and more efficient recognition accuracy of skin diseases. We used feed forward neural networks to classify input images to be psoriases infected or non psoriasis infected. Results: The system gave very encouraging results during the neural network training and generalization face. Conclusion: The aim of this worked to evaluate the ability of the proposed skin texture recognition algorithm to discriminate between healthy and infected skins and we took the psoriasis disease as example. Key words: Skin recognition, skin texture, computer aided disease diagnosis, texture analysis, neural networks, psoriasis, INTRODUCTION With advance of medical imaging technologies (including instrumentation, computer and algorithm), the acquired data information is getting so rich toward beyond the human's capability of visual recognition and efficient [...]
- Published
- 2010