Li H, Yin W, Ng CK, Huang R, Du S, Sharma M, Li B, Yuan G, Michalska M, Matta SK, Chen Y, Chandrasekaran N, Russo S, Cameron NR, Funston AM, and Jasieniak JJ
Accumulation of heavy metal ions, including copper ions (Cu 2+ ), presents a serious threat to human health and to the environment. A substantial amount of research has focused on detecting such species in aqueous solutions. However, progress towards ultrasensitive and easy-to-use sensors for non-aqueous solutions is still limited. Here, we focus on the detection of copper species in hexane, realising ultra-sensitive detection through a fluorescence-based approach. To achieve this, a novel macroporous composite material has been developed featuring luminescent CsPbBr 3 nanocrystals (NCs) chemically adhered to a polymerized high internal phase emulsion (polyHIPE) substrate through surface thiol groups. Due to this thiol functionality, sub-monolayer NC formation is realised, which also renders outstanding stability of the composite in the ambient environment. Copper detection is achieved through a direct solution based immersion of the CsPbBr 3 -(SH)polyHIPE composite, which results in concentration-dependent quenching of the NC photoluminescence. This newly developed sensor has a limit of detection (LOD) for copper as low as 1 × 10 -16 M, and a wide operating window spanning 10 -2 to 10 -16 M. Moreover, the composite exhibits excellent selectivity among different transition metals.