4 results on '"Florian, Strauss"'
Search Results
2. Investigations into the superionic glass phase of Li$_{4}$PS$_{4}$I for improving the stability of high-loading all-solid-state batteries
- Author
-
Juergen Janek, Florian Strauss, Torsten Brezesinski, and Jun Hao Teo
- Subjects
Battery (electricity) ,Technology ,Materials science ,Argyrodite ,Electrolyte ,engineering.material ,Cathode ,Anode ,law.invention ,Inorganic Chemistry ,Chemical engineering ,law ,Phase (matter) ,engineering ,Fast ion conductor ,Ionic conductivity ,ddc:600 - Abstract
In recent years, investigations into improving the performance of bulk-type solid-state batteries (SSBs) have attracted much attention. This is due, in part, to the fact that they offer an opportunity to outperform the present Li-ion battery technology in terms of energy density. Ni-rich Li$_{1+x}$(Ni$_{1-y-z}$Co$_{y}$Mn$_{z}$)$_{1-x}$O$_{2}$ (NCM) and lithium-thiophosphate-based solid electrolytes appear to be a promising material combination for application at the cathode side. Here, we report about exploratory investigations into the 1.5Li$_{2}$S/0.5P$_{2}$S$_{5}$/LiI phase system and demonstrate that a glassy solid electrolyte has more than an order of magnitude higher room-temperature ionic conductivity than the crystalline counterpart, tetragonal Li$_{4}$PS$_{4}$I with the P4/nmm space group (∼1.3 versus ∼0.2 mS cm$^{-1}$). In addition, preliminary results show that usage of the glassy 1.5Li$_{2}$S–0.5P$_{2}$S$_{5}$–LiI in pellet stack SSB cells with an NCM622 (60% Ni content) cathode and a Li$_{4}$Ti$_{5}$O$_{12}$ anode leads to enhanced capacity retention when compared to the frequently employed argyrodite Li$_{6}$PS$_{5}$Cl solid electrolyte. This indicates that, apart from interfacial instabilities, the stiffness (modulus) of the solid electrolyte and associated mechanical effects may also impact significantly the long-term performance. Moreover, SSB cells with the glassy 1.5Li$_{2}$S–0.5P$_{2}$S$_{5}$–LiI and high-loading cathode (∼22 mg$_{NCM622}$ cm$^{-2}$) manufactured using a slurry-casting process are found to cycle stably for 200 cycles at C/5 rate and 45 °C, with areal capacities in excess of 3 mA h cm$^{-2}$.
- Published
- 2020
- Full Text
- View/download PDF
3. Electrochemical activity and high ionic conductivity of lithium copper pyroborate Li6CuB4O10
- Author
-
Matthieu Saubanère, Daniel Alves Dalla Corte, Florian Strauss, Gwenaëlle Rousse, Mohamed Ben hassine, Matthieu Courty, Jean-Marie Tarascon, Robert Dominko, Hervé Vezin, Mingxue Tang, Université Pierre et Marie Curie - Paris 6 (UPMC), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), National Institute of Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Université d'Orléans (UO)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 (LASIRE), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Univeristy of Ljubljana, Chaire Chimie du solide et énergie, Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille Institut (CLIL), and Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Analytical chemistry ,General Physics and Astronomy ,chemistry.chemical_element ,Context (language use) ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,Redox ,Copper ,0104 chemical sciences ,law.invention ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,chemistry ,law ,Ionic conductivity ,Lithium ,Density functional theory ,Physical and Theoretical Chemistry ,0210 nano-technology ,Electron paramagnetic resonance - Abstract
In the search for new cathode materials for Li-ion batteries, borate (BO33-) based compounds have gained much interest during the last two decades due to the low molecular weight of the borate polyanions which leads to active materials with increased theoretical capacities. In this context we herein report the electrochemical activity versus lithium and the ionic conductivity of a diborate or pyroborate B2O54- based compound, Li6CuB4O10. By combining various electrochemical techniques with in situ X-ray diffraction, we show that this material can reversibly insert/deinsert limited amounts of lithium (~0.3 Li+) in a potential window ranging from 2.5 to 4.5 V vs. Li+/Li0. We demonstrate, via electron paramagnetic resonance (EPR), that such an electrochemical activity centered near 4.25 V vs. Li+/Li0 is associated with the Cu3+/Cu2+ redox couple, confirmed by density functional theory (DFT) calculations. Another specificity of this compound lies in its different electrochemical behavior when cycled down to 1 V vs. Li+/Li0 which leads to the extrusion of elemental copper via a conversion type reaction as deduced by transmission electron microscopy (TEM). Lastly, we probe the ionic conductivity by means of AC and DC impedance measurements as a function of temperature and show that Li6CuB4O10 undergoes a reversible structural transition around 350 °C, leading to a surprisingly high ionic conductivity of ~1.4 mS cm-1 at 500 °C.
- Published
- 2016
4. Li–Si thin films for battery applications produced by ion-beam co-sputtering
- Author
-
Florian Strauß, Erwin Hüger, Michael Bruns, Harald Schmidt, Paul Heitjans, and Vanessa Trouillet
- Subjects
Materials science ,Ion beam ,Silicon ,General Chemical Engineering ,article ,chemistry.chemical_element ,Nanotechnology ,General Chemistry ,Anode ,Amorphous solid ,X-ray photoelectron spectroscopy ,chemistry ,Chemical engineering ,Sputtering ,ddc:530 ,Lithium ,Thin film - Abstract
Amorphous lithium–silicon compounds are promising materials in order to improve pure silicon as a high-capacity anode material in lithium-ion batteries. We demonstrated that it is possible to produce amorphous LixSi (x ≈ 0.4) thin films by reactive ion-beam co-sputtering of a segmented solid state target composed of metallic lithium and elemental silicon. At the surface a graded LixSiOy layer of some nanometer thickness is formed by contact with air which seems to prevent decomposition of the LixSi.
- Published
- 2015
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.