1. Effects of molecular weight fractionated humic acid on the transport and retention of quantum dots in porous media
- Author
-
Guangming Zeng, Liang Hu, Piao Xu, Kai He, Yang Jiangli, Zhenzhen Huang, Jia Wan, Anwei Chen, Huan Yi, and Lei Qin
- Subjects
chemistry.chemical_classification ,Chemistry ,Materials Science (miscellaneous) ,Nanoparticle ,02 engineering and technology ,010501 environmental sciences ,021001 nanoscience & nanotechnology ,01 natural sciences ,Surface coating ,Key factors ,Chemical engineering ,Quantum dot ,Humic acid ,0210 nano-technology ,Porous medium ,0105 earth and related environmental sciences ,General Environmental Science - Abstract
Although humic acid (HA) plays an important role in the fate and transport of nanoparticles in subsurface environments, the roles of specific fractions of HA in the transport of nanoparticles are still not well understood. In this study, quantum dots (QDs) with carboxyl and amino modifications (QD–COOH and QD–NH2) were used as typical nanoparticles to understand the effects of molecular weight (MW) fractionated humic acid (Mf-HA) on the transport and retention behaviour of nanoparticles. Transport experiments on QDs were performed both in the absence and presence of pristine- and Mf-HA in both NaCl and CaCl2 solutions at pH 7.0. The Mf-HA had distinct effects on the transport and retention behavior of QDs, which were highly dependent on the MW of the Mf-HA. In addition, the surface coating of the QDs and cation types also showed significant effects on the transport behavior of QDs. In NaCl solution, the transport of QD–NH2 was dramatically enhanced in the presence of pristine- and Mf-HA, and the high MW Mf-HA (>100 kDa and 30–100 kDa) could enhance the mobility of the QDs more significantly than the low MW Mf-HA (10–30 kDa, 3–10 kDa, and more...
- Published
- 2018
- Full Text
- View/download PDF