1. An effective urobilin clearance strategy based on paramagnetic beads facilitates microscale proteomic analysis of urine.
- Author
-
Zhen, Kemiao, Hou, Wenhao, Bai, Lu, Wang, Mingchao, Yue, Zhan, Xu, Zanxin, Xiong, Deyun, Gao, Li, and Ying, Wantao
- Subjects
- *
BENIGN prostatic hyperplasia , *URINALYSIS , *PROTEOMICS , *UREA , *PRECIPITATION (Chemistry) , *PROSTATE cancer patients - Abstract
Urine provides an ideal source for disease biomarker discovery. High-adhesion contaminants such as urobilin, which are difficult to remove from urine, can severely interfere with urinary proteomic analysis. Here, we aimed to establish a strategy based on single-pot, solid-phase-enhanced sample preparation (SP3) technology to prepare samples for urinary proteomics analysis that almost completely eliminates the impact of urobilin. A systematic evaluation of the effects of two urinary protein precipitation methods, two types of protein lysis buffers, and different ratios of magnetic digestion beads on the identification and quantification of the microscale urinary proteome was conducted. Our results indicate that methanol–chloroform precipitation, coupled with efficient lysis facilitated by urea, and subsequent enzymatic digestion using a mix of hydrophilic and hydrophobic magnetic beads offers the best performance. Further applying this strategy to the urine of patients with benign prostatic hyperplasia, prostate cancer and healthy individuals, combined with a narrow window of data-independent acquisition, FGFR4, MYLK, ORM2, GOLM1, SPP1, CD55, CSF1, DLD and TIMP3 were identified as potential biomarkers to discriminate benign prostatic hyperplasia and prostate cancer patients. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF