1. Single-molecule mechanical unfolding experiments reveal a critical length for the formation of α-helices in peptides
- Author
-
Sébastien Lecommandoux, Damien Sluysmans, Anne-Sophie Duwez, Julie Thevenot, Nicolas Willet, Molecular Systems Research Unit, University of Liège, Université de Liège, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), TEAM 3 LCPO, and Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Protein Conformation, alpha-Helical ,Protein Denaturation ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Protein Refolding ,Critical length ,Trifluoroacetic Acid ,Molecule ,General Materials Science ,[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials ,Protein secondary structure ,chemistry.chemical_classification ,Chemistry ,Force spectroscopy ,021001 nanoscience & nanotechnology ,Protein tertiary structure ,0104 chemical sciences ,Amino acid ,Crystallography ,Immobilized Proteins ,[CHIM.POLY]Chemical Sciences/Polymers ,Polyglutamic Acid ,Intramolecular force ,Helix ,0210 nano-technology ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
International audience; α-Helix is the most predominant secondary structure in proteins and supports many functions in biological machineries. The conformation of the helix is dictated by many factors such as its primary sequence, intramolecular interactions, or the effect of the close environment. Several computational studies have proposed that there is a critical maximum length for the formation of intact compact helical structures, supporting the fact that most intact α-helices in proteins are constituted of a small number of amino acids. To obtain a detailed picture on the formation of α-helices in peptides and their mechanical stability, we have synthesized a long homopolypeptide of about 90 amino acids, poly(γ-benzyl-L-glutamate), and investigated its mechanical behaviour by AFM-based single-molecule force spectroscopy. The characteristic plateaus observed in the force–extension curves reveal the unfolding of a series of small helices (from 1 to 4) of about 20 amino acid residues connected to each other, rather than a long helix of 90 residues. Our results suggest the formation of a tertiary structure made of short helices with kinks, instead of an intact compact helical structure for sequences of more than 20 amino acid residues. To our knowledge, this is the first experimental evidence supporting the concept of a helical critical length previously proposed by several computational studies.
- Published
- 2020
- Full Text
- View/download PDF