14 results on '"Clary, DC"'
Search Results
2. Calculations on the unimolecular decomposition of the nerve agent VX.
- Author
-
Shan X, Sambrook MR, and Clary DC
- Subjects
- Kinetics, Molecular Structure, Thermodynamics, Density Functional Theory, Nerve Agents chemistry, Organothiophosphorus Compounds chemistry
- Abstract
It is very difficult to perform experiments on the physical parameters for the thermal decomposition of chemical nerve agents such as VX and computations, therefore, are useful. The reaction dynamics of the gas-phase pericyclic hydrogen transfer of the nerve agent VX is studied computationally. The geometries of the stationary structures are calculated at M06-2X/jul-cc-pVTZ level of theory. Single point energy calculations are carried out at the CBS/QB3 level to correct the energy barriers. Canonical reaction rate constants are calculated as a function of temperature. The one-dimensional semiclassical transition state theory is used to analyse the quantum tunneling effects. A reduced-dimensional hindered rotor model is proposed, tested, and applied to calculate the vibrational partition functions. It is found that the ester (O-side) and thioester (S-side) side chains of VX undergo pericyclic H-transfer reactions that result in decomposition of the molecule. The S-side reaction is favoured both kinetically and thermodynamically and dominates the pyrolysis over the temperature range from 600 K to 1000 K. It is predicted that VX completely decomposes in 2 s at temperatures above 750 K.
- Published
- 2020
- Full Text
- View/download PDF
3. Catalysis and tunnelling in the unimolecular decay of Criegee intermediates.
- Author
-
Burd TAH, Shan X, and Clary DC
- Abstract
The unimolecular decay of Criegee intermediates is the major producer of OH radicals in the atmosphere. Here, Semi-Classical Transition State Theory (SCTST) in full and reduced dimensions is used to determine thermal rate constants for their unimolecular decay, as well as their decay catalysed by a single water molecule. These reactions shed light on the applicability of SCTST for catalysed hydrogen transfer reactions.
- Published
- 2018
- Full Text
- View/download PDF
4. A reduced dimensionality quantum mechanical study of the H + HCF3 ↔ H2 + CF3 reaction.
- Author
-
Shan X and Clary DC
- Abstract
Recently, the authors developed a new method to construct a two-dimensional potential energy surface (PES) for use in reduced-dimensionality quantum scattering calculations in chemical reactions. In this approach the minimum energy path of a reaction was utilized and the rest of the surface was fitted by a Morse function. Here we test this method on the H + HCF3 ↔ H2 + CF3 reaction. The geometry optimizations and frequency calculations are done at the MP2/cc-pVTZ level of theory, while the energies are calculated at the CCSD(T)/aug-cc-pVTZ level. An adiabatic energy barrier of 59.61 kJ mol(-1) for the forward direction is suggested by our calculations, and the reaction is endothermic by 10.55 kJ mol(-1) in the same direction. When compared to classical transition state theory, quantum scattering calculations suggest that a tunnelling effect can be observed in both forward and backward reactions. For the forward direction, the quantum tunnelling is important at temperatures typically lower than 300 K. It has a greater contribution to the backward reaction, and is over a wider temperature range from 200 K to 1000 K. We also conducted an analysis of the kinetic isotope effects on the backward reaction by replacing H2 with D2. These results also clearly demonstrate the significance of quantum tunnelling in the reaction.
- Published
- 2013
- Full Text
- View/download PDF
5. Quantum effects in the abstraction reaction by H atoms of primary and secondary hydrogens in n-C4H10: a test of a new potential energy surface construction method.
- Author
-
Shan X and Clary DC
- Abstract
Recently, von Horsten et al. suggested an efficient method to construct two dimensional potential energy surfaces (PESs) for use in quantum scattering simulations, in which they utilised the minimum energy path (MEP) and assumed harmonic behaviour of the PES near the MEP. In the same paper, the authors applied this method to various H-abstraction reactions from C1-C3 alkane molecules. In this work we demonstrate an alternative PES construction method, and apply it to the more challenging H-abstraction from n-C(4)H(10) reactions. The geometry optimizations and frequency calculations are done at the MP2/cc-pVTZ level of theory, while the energies are calculated with the CCSD(T) method with the same basis set. The calculations give adiabatic energy barrier heights of 45.9 kJ mol(-1) and 34.4 kJ mol(-1) for the primary and secondary hydrogens in n-C(4)H(10). When compared to purely classical transition state theory, quantum scattering calculations show that quantum tunnelling and zero-point effects have large contributions at low temperatures, typically below 500 K. The branching ratio study suggests that the abstraction of secondary hydrogen in n-C(4)H(10) dominates the overall reaction rate at low temperatures. The rate constants for the two abstraction channels become more comparable as the temperature increases.
- Published
- 2013
- Full Text
- View/download PDF
6. Quasiclassical trajectory calculations of hydrogen absorption in the (NaAlH4)2Ti system on a model analytical potential energy surface.
- Author
-
Ljubić I and Clary DC
- Abstract
We performed a quasiclassical trajectory dynamics study on a model analytical 21-dimensional (7 active atoms) potential energy surface (PES) to examine in detail the mechanism of the hydrogen absorption in a simple (NaAlH(4))(2)Ti model system. The reaction involves a capture of H(2) by the Ti centre and formation of the (η(2)-H(2))Ti(NaAlH(3))(2) coordination complex containing the side-on bonded dihydrogen ligand. The calculated rate constant corresponds to a very fast capture of H(2) by the Ti coordination sphere without a demonstrable barrier. This implies that this step is not the rate-determining step in the complex multi-step process of the NaAlH(4) recovery. The model analytical PES captures the essence of this reaction well and the corresponding energy contours compare favourably to those based on the all-atom hybrid density functional theory calculations.
- Published
- 2012
- Full Text
- View/download PDF
7. Reactive resonances in the F + CHD3 reaction--a quantum dynamics study.
- Author
-
von Horsten HF and Clary DC
- Abstract
We present quantum dynamical investigations into the F + CHD(3) reaction. In our reduced dimensionality study we treat the two most important degrees of freedom, which describe the bond making and bond breaking explicitly, while treating the remaining spectator modes adiabatically. Cumulative as well as final state resolved reaction probabilities and cross sections are calculated for the two isotopic channels F + CHD(3) → FH + CD(3) and F + CHD(3) → FD + CHD(2). Our theoretical results are compared to the experimental findings of Liu and co-workers [Zhou et al., Mol. Phys., 2010, 108, 957]. Potential resonance states in the low collision energy regime are analyzed in detail employing Smith's lifetime matrix and bound state calculations.
- Published
- 2011
- Full Text
- View/download PDF
8. Towards understanding a mechanism for reversible hydrogen storage: theoretical study of transition metal catalysed dehydrogenation of sodium alanate.
- Author
-
Ljubić I and Clary DC
- Abstract
On the basis of density functional theory and coupled-cluster CCSD(T) calculations we propose a mechanism of the dehydrogenation of transition metal doped sodium alanate. Insertion of two early 3d-transition metals, scandium and titanium, both of which are promising catalysts for reversible hydrogen storage in light metal hydrides, is compared. The mechanism is deduced from studies on the decomposition of a model system consisting of one transition metal atom and two NaAlH(4) units. Subsequently, the significance of such minimal cluster model systems to the real materials is tested by embedding the systems into the surface of the NaAlH(4) crystal. It is found that the dehydrogenation proceeds via breaking of the bridge H-Al bond and consequent formation of intermediate coordination compounds in which the H(2) molecule is side-on (eta(2)-) bonded to the transition metal centre. The total barrier to the H(2) release is thus dependent upon both the strength of the Al-H bond to be broken and the depth of the coordinative potential. The analogous mechanism applies for the recognized three successive dehydrogenation steps. The gas-phase model structures embedded into the surface of the NaAlH(4) crystal exhibit an unambiguous kinetic stability and their general geometric features remain largely unchanged.
- Published
- 2010
- Full Text
- View/download PDF
9. Torsional anharmonicity in transition state theory calculations.
- Author
-
Sturdy YK and Clary DC
- Subjects
- Algorithms, Computer Simulation, Empirical Research, Energy Transfer, Kinetics, Mathematical Computing, Models, Statistical, Monte Carlo Method, Temperature, Thermodynamics, Time Factors, Alkenes chemistry, Models, Chemical
- Abstract
We present a new application for the Torsional Path Integral Monte Carlo (TPIMC) method in which the TPI partition functions are introduced into the calculation of Transition State Theory (TST) rate constants. In this way, an explicit treatment of torsional anharmonicity is included in the TST calculations and the magnitude of these effects can be assessed. The new method is tested on the C(2)H(6) + H hydrogen abstraction reaction and concerted hydrogen transfer in the carbonic acid dimer, for which we have developed torsional potential energy surfaces. For the C(2)H(6) + H reaction the rate constants are halved at room temperature on including a treatment of torsional anharmonicity, while the effects are found to be much smaller for the hydrogen transfer reaction in the carbonic acid dimer.
- Published
- 2007
- Full Text
- View/download PDF
10. Torsional anharmonicity in the conformational analysis of tryptamine.
- Author
-
Sturdy YK and Clary DC
- Subjects
- Computer Simulation, Models, Chemical, Models, Molecular, Molecular Conformation, Monte Carlo Method, Quantum Theory, Thermodynamics, Tryptamines chemistry
- Abstract
In this paper we calculate the relative conformer populations of the tryptamine molecule. Our approach combines high level electronic structure conformer energies with harmonic frequencies and an anharmonic treatment of the torsional motions using the torsional path integral Monte Carlo method. We have developed a 3-D potential energy surface as a function of the torsional coordinates at the B3LYP/6-31+G(d) level using 2535 grid points. Eight conformers of tryptamine were found to be significantly populated at 430 K as opposed to the experimental observation of seven. This, along with further comparisons with various experimental data, leads us to suppose that conformer interconversion occurs during the cooling phases of many of the experiments. The ordering of the calculated populations fits well with available experimental data. Torsional anharmonicity is found to affect conformer populations more significantly at 430 K than at 100 K (although overall the effects are small), while quantum mechanical effects are not important at either temperature.
- Published
- 2007
- Full Text
- View/download PDF
11. Reduced dimensionality quantum dynamics of Cl + CH4 --> HCl + CH3 on an ab initio potential.
- Author
-
Banks ST and Clary DC
- Subjects
- Computer Simulation, Deuterium chemistry, Kinetics, Models, Chemical, Molecular Conformation, Quantum Theory, Thermodynamics, Chlorine chemistry, Hydrochloric Acid chemistry, Methane chemistry
- Abstract
We study the reaction Cl + CH(4)--> HCl + CH(3) using a 2-D potential energy surface obtained by fitting a double Morse analytical function to high level (CCSD(T)/cc-pVTZ//MP2/cc-pVTZ)ab initio data. Dynamics simulations are performed in hyperspherical coordinates with the close-coupled equations being solved using R-matrix propagation. Quantum contributions from spectator modes are included via a harmonic zero-point correction to the ab initio data prior to fitting the potential. This is the first time this method has been applied to a heavy-light-heavy reaction and the first time it has been used to study differential cross sections. We find thermal rate constants and state-to-state differential cross sections which are in good agreement with experimental data. We discuss the applicability of our method to the study of kinetic isotope effects (KIEs), which we derive for the CH(4)/CD(4) substitution. The calculated KIE compares favourably with experiment. Finally, we discuss the sensitivity of the results of dynamics simulations on the accuracy of the fitted potential.
- Published
- 2007
- Full Text
- View/download PDF
12. Comparative study of cluster- and supercell-approaches for investigating heterogeneous catalysis by electronic structure methods: tunneling in the reaction N + H --> NH on Ru(0001).
- Author
-
Tautermann CS and Clary DC
- Abstract
Different ruthenium clusters of various sizes are constructed with the aim to model the Ru(0001) surface with a sufficient accuracy for predicting catalysis by hybrid density functional methods (B3LYP). As an example reaction the hydrogenation step N(ads) + H(ads) --> NH(ads) from the catalytic production cycle of ammonia is chosen. A cluster of 12 ruthenium atoms is found to reproduce experimental geometries and frequencies of the various reactants on the surface satisfyingly. To get the geometries of adsorbed hydrogen qualitatively correct it is shown that second layer atoms have to be included in the model cluster. Boundary effects are believed to have minor effects on optimized geometries, whereas the effects on reaction barriers are significant. A comparison of model cluster calculations to a periodic supercell approach employing plane waves and density functional methods (RPBE) reveals similar barriers for reaction. The influence of tunneling in this reaction is determined by the small curvature tunneling approach on the electronic surfaces.
- Published
- 2006
- Full Text
- View/download PDF
13. Quantum reactive scattering of H + hydrocarbon reactions.
- Author
-
Kerkeni B and Clary DC
- Subjects
- Algorithms, Biophysical Phenomena, Biophysics, Kinetics, Protons, Quantum Theory, Thermodynamics, Hydrocarbons chemistry, Hydrogen chemistry
- Abstract
A practical quantum-dynamical method is described for predicting accurate rate constants for general chemical reactions. The ab initio potential energy surfaces for these reactions can be built from a minimal number of grid points (average of 50 points) and expressed in terms of analytical functionals. All the degrees of freedom except the breaking and forming bonds are optimised using the MP2 method with a cc-pVTZ basis set. Single point energies are calculated on the optimised geometries at the CCSD(T) level of theory with the same basis set. The dynamics of these reactions occur on effective reduced dimensionality hyper-surfaces accounting for the zero-point energy of the optimised degrees of freedom. Bonds being broken and formed are treated with explicit hyperspherical time independent quantum dynamics. Application of the method to the H + CH(4)--> H(2)+ CH(3), H + C(2)H(6)--> H(2)+ C(2)H(5), H + C(3)H(8)--> H(2)+n-C(3)H(7)/H(2)+i-C(3)H(7) and H + CH(3)OH --> H(2)+ CH(3)O/H(2)+ CH(2)OH reactions illustrate the potential of the approach in predicting rate constants, kinetic isotope effects and branching ratios. All studied reactions exhibit large quantum tunneling in the rate constants at lower temperatures. These quantum calculations compare well with the experimental results.
- Published
- 2006
- Full Text
- View/download PDF
14. Nuclear quantum effects on the structure and energetics of (H2O)6H+.
- Author
-
Mella M, Kuo JL, Clary DC, and Klein ML
- Subjects
- Chemistry, Physical methods, Computer Simulation, Diffusion, Molecular Conformation, Molecular Structure, Monte Carlo Method, Protons, Water chemistry, Hydrogen chemistry, Hydrogen Bonding
- Abstract
The energetics and structure of the protonated water hexamer (H2O)6H+ have been examined employing both model potentials and high-level ab initio methods. To select candidate structures for this cluster, Parallel-Tempering and the OSS2 potential were used as devices to complement the set of stationary points previously optimized by Hodges and Wales, Chem. Phys. Lett., 2000, 324, 279. Structures of these local minima were successively re-optimized using OSS3, B3LYP/aug-cc-pVDZ, and MP2/aug-cc-pVDZ, the latter providing a reference to benchmark the performance of the empirical models and B3LYP method. We found that both OSS2 and OSS3 require a re-parameterization to adequately describe the energetics of some isomers. Zero point energy was found to be important in defining the relative stability of the optimized isomers. The effect of the anharmonicity on the vibrational ground state of (H2O)6H+ was also examined by means of diffusion Monte Carlo (DMC) and the OSS3 potential, and we found that it accounts for a decrease in total energy of roughly 0-4.4 mE(h). This is a significant effect on the energetics considering that many isomers are nearly degenerate. Including the anharmonic corrections computed with DMC, the branched species were found to be the most stable isomers. The height of the barriers separating a cage or cyclic isomer from a branched one was found to vary from 1.5 to 5.8 mE(h).
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.