1. Numerical solutions of a class of singular neutral functional differential equations on graded meshes
- Author
-
Janos Turi and Pedro Perez-Nagera
- Subjects
Numerical Analysis ,Differential equation ,Semigroup ,Applied Mathematics ,Computation ,weakly singular kernels ,34K40 ,65R20 ,graded meshes ,34K28 ,Singularity ,Rate of convergence ,Kernel (image processing) ,Convergence (routing) ,Applied mathematics ,Singular neutral equations ,Polygon mesh ,rate of convergence ,Mathematics - Abstract
In this paper, we present case studies to illustrate the dependence of the rate of convergence of numerical schemes for singular neutral equations (SNFDEs) on the particular mesh employed in the computation. In Ito and Turi, a semigroup theoretical framework was used to show convergence of semi- and fully- discrete methods for a class of SNFDEs with weakly singular kernels. On the other hand, numerical experiments in Ito and Turi demonstrated a ``degradation" of the expected rate of convergence when uniform meshes were considered. In particular, it was numerically observed that the degradation of the rate of convergence was related to the strength of the singularity in the kernel of the SNFDE. Following the idea used for Volterra equations with weakly singular kernels, see, e.g., Brunner, we investigate graded meshes associated with the kernel of the SNFDE in attempting to restore convergence rates.
- Published
- 2018
- Full Text
- View/download PDF