1. Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer.
- Author
-
Masetti M, Carriero R, Portale F, Marelli G, Morina N, Pandini M, Iovino M, Partini B, Erreni M, Ponzetta A, Magrini E, Colombo P, Elefante G, Colombo FS, den Haan JMM, Peano C, Cibella J, Termanini A, Kunderfranco P, Brummelman J, Chung MWH, Lazzeri M, Hurle R, Casale P, Lugli E, DePinho RA, Mukhopadhyay S, Gordon S, and Di Mitri D
- Subjects
- Animals, Cell Plasticity genetics, Cell Plasticity immunology, Cytokines metabolism, Disease Models, Animal, Disease Progression, Gene Expression Profiling, Gene Knockdown Techniques, Heterografts, Humans, Lipid Metabolism, Male, Metabolic Networks and Pathways, Mice, Prostatic Neoplasms pathology, Single-Cell Analysis, Lipids chemistry, Prostatic Neoplasms immunology, Prostatic Neoplasms metabolism, Tumor Microenvironment, Tumor-Associated Macrophages immunology, Tumor-Associated Macrophages metabolism
- Abstract
Tumor-associated macrophages (TAMs) are correlated with the progression of prostatic adenocarcinoma (PCa). The mechanistic basis of this correlation and therapeutic strategies to target TAMs in PCa remain poorly defined. Here, single-cell RNA sequencing was used to profile the transcriptional landscape of TAMs in human PCa, leading to identification of a subset of macrophages characterized by dysregulation in transcriptional pathways associated with lipid metabolism. This subset of TAMs correlates positively with PCa progression and shorter disease-free survival and is characterized by an accumulation of lipids that is dependent on Marco. Mechanistically, cancer cell-derived IL-1β enhances Marco expression on macrophages, and reciprocally, cancer cell migration is promoted by CCL6 released by lipid-loaded TAMs. Moreover, administration of a high-fat diet to tumor-bearing mice raises the abundance of lipid-loaded TAMs. Finally, targeting lipid accumulation by Marco blockade hinders tumor growth and invasiveness and improves the efficacy of chemotherapy in models of PCa, pointing to combinatorial strategies that may influence patient outcomes., Competing Interests: Disclosures: R.A. DePinho reported being a Founder and Advisor for Tvardi Therapeutics, Asylia Therapeutics, Nirogy Therapeutics, Stellanova Therapeutics, and Sporos Bioventures. The focus of these companies is not directly related to the content of this manuscript. S. Gordon reported personal fees from Verseau, Myeloid Therapeutics, and Alnylam outside the submitted work. No other disclosures were reported., (© 2021 Masetti et al.)
- Published
- 2022
- Full Text
- View/download PDF