1. A Tuba/Cdc42/Par6A complex is required to ensure singularity in apical domain formation during enterocyte polarization
- Author
-
Johannes L. Bos, Mirjam C. van der Net, Susan Zwakenberg, Lucas J. M. Bruurs, and Fried J. T. Zwartkruis
- Subjects
0301 basic medicine ,Hydrolases ,Cell Membranes ,lcsh:Medicine ,CDC42 ,Biochemistry ,Epithelium ,Signaling Molecules ,Gene Knockout Techniques ,Database and Informatics Methods ,0302 clinical medicine ,Cell Signaling ,Animal Cells ,Cell polarity ,Medicine and Health Sciences ,Guanine Nucleotide Exchange Factors ,Small GTPase ,cdc42 GTP-Binding Protein ,lcsh:Science ,Multidisciplinary ,Microvilli ,Chemistry ,Cell Polarity ,Signal transducing adaptor protein ,Precipitation Techniques ,Enzymes ,Cell biology ,medicine.anatomical_structure ,Guanine nucleotide exchange factor ,Cellular Structures and Organelles ,Cellular Types ,Anatomy ,Signal transduction ,Sequence Analysis ,Signal Transduction ,Research Article ,Cell Physiology ,Bioinformatics ,Enterocyte ,Research and Analysis Methods ,Cell Line ,03 medical and health sciences ,Sequence Motif Analysis ,medicine ,Humans ,Immunoprecipitation ,Protein Structure, Quaternary ,GTPase signaling ,Adaptor Proteins, Signal Transducing ,lcsh:R ,Biology and Life Sciences ,Proteins ,Epithelial Cells ,Cell Biology ,Apical membrane ,Co-Immunoprecipitation ,Cytoskeletal Proteins ,Guanosine Triphosphatase ,Enterocytes ,Biological Tissue ,030104 developmental biology ,Enzymology ,lcsh:Q ,030217 neurology & neurosurgery - Abstract
Apico-basal polarity establishment is a seminal process in tissue morphogenesis. To function properly it is often imperative that epithelial cells limit apical membrane formation to a single domain. We previously demonstrated that signaling by the small GTPase Cdc42, together with its guanine nucleotide exchange factor (GEF) Tuba, is required to prevent the formation of multiple apical domains in polarized Ls174T:W4 cells, a single cell model for enterocyte polarization. To further chart the molecular signaling mechanisms that safeguard singularity during enterocyte polarization we generated knockout cells for the Cdc42 effector protein Par6A. Par6A loss results in the formation of multiple apical domains, similar to loss of Cdc42. In Par6A knockout cells, we find that active Cdc42 is more mobile at the apical membrane compared to control cells and that wild type Cdc42 is more diffusely localized throughout the cell, indicating that Par6A is required to restrict Cdc42 signaling. Par6A, Cdc42 and its GEF Tuba bind in a co-immunoprecipitation experiment and they partially colocalize at the apical membrane in polarized Ls174T:W4 cells, suggesting the formation of a trimeric complex. Indeed, in a rescue experiment using Par6A mutants, we show that the ability to establish this trimeric complex correlates with the ability to restore singularity in Par6A knockout cells. Together, these experiments therefore indicate that a Tuba/Cdc42/Par6A complex is required to ensure the formation of a single apical domain during enterocyte polarization.
- Published
- 2018