Sanja Huibner, Erika Benko, Cindy M. Liu, Colin Kovacs, Kamnoosh Shahabi, Rupert Kaul, Bruce A. Hungate, Tania Contente-Cuomo, Lance B. Price, Michael G. Dwan, Maliha Aziz, Richard T. Lester, and Brendan J. W. Osborne
Semen is a major vector for HIV transmission, but the semen HIV RNA viral load (VL) only correlates moderately with the blood VL. Viral shedding can be enhanced by genital infections and associated inflammation, but it can also occur in the absence of classical pathogens. Thus, we hypothesized that a dysregulated semen microbiome correlates with local HIV shedding. We analyzed semen samples from 49 men who have sex with men (MSM), including 22 HIV-uninfected and 27 HIV-infected men, at baseline and after starting antiretroviral therapy (ART) using 16S rRNA gene-based pyrosequencing and quantitative PCR. We studied the relationship of semen bacteria with HIV infection, semen cytokine levels, and semen VL by linear regression, non-metric multidimensional scaling, and goodness-of-fit test. Streptococcus, Corynebacterium, and Staphylococcus were common semen bacteria, irrespective of HIV status. While Ureaplasma was the more abundant Mollicutes in HIV-uninfected men, Mycoplasma dominated after HIV infection. HIV infection was associated with decreased semen microbiome diversity and richness, which were restored after six months of ART. In HIV-infected men, semen bacterial load correlated with seven pro-inflammatory semen cytokines, including IL-6 (p = 0.024), TNF-α (p = 0.009), and IL-1b (p = 0.002). IL-1b in particular was associated with semen VL (r2 = 0.18, p = 0.02). Semen bacterial load was also directly linked to the semen HIV VL (r2 = 0.15, p = 0.02). HIV infection reshapes the relationship between semen bacteria and pro-inflammatory cytokines, and both are linked to semen VL, which supports a role of the semen microbiome in HIV sexual transmission., Author Summary The classical paradigm of HIV infectivity centers on the blood HIV RNA viral load. However, while other fluid compartments such as semen and cerebrospinal fluid can have distinct viral loads from blood, the causes of localized HIV shedding are not fully understood. Since the semen viral load is an independent predictor of HIV transmission risk, it is critical to understand the local factors that trigger increased semen viral shedding in order to develop novel preventative strategies. Here, we evaluated the semen microbiome, bacterial load, and cytokine levels in 22 HIV-uninfected men who have sex with men (MSM) and in 27 HIV-infected MSM before and after initiation of antiretroviral therapy (ART). We found that HIV infection reduces semen microbiome biodiversity, which is restored with ART and immune reconstitution. We also found that semen bacterial load in untreated, HIV-infected men is associated with the levels of seven semen cytokines, relationships not seen in the uninfected controls. In particular, the cytokine IL-1b was uniquely correlated with both semen bacterial and viral load. Our findings support the interaction between semen microbiome and local immunology, and suggest that IL-1b could be a mechanism for semen microbiome to trigger semen viral shedding.