1. A mechanistically novel peptide agonist of the IL-7 receptor that addresses limitations of IL-7 cytokine therapy.
- Author
-
William J Dower, Angie Inkyung Park, Alice V Bakker, Steven E Cwirla, Praechompoo Pongtornpipat, Blake M Williams, Prarthana Joshi, Bryan A Baxter, Michael C Needels, and Ronald W Barrett
- Subjects
Medicine ,Science - Abstract
Interleukin (IL)-7 is broadly active on T-cell populations, and modified versions have been clinically evaluated for a variety of therapeutic applications, including cancer, lymphopenia, and infectious diseases; and found to be relatively well-tolerated and biologically active. Here we describe novel IL-7R agonists that are unrelated in structure to IL-7, bind to the receptor subunits differently from IL-7, but closely emulate IL-7 biology. The small size, low structural complexity, and the natural amino acid composition of the pharmacologically active peptide MDK1472 allows facile incorporation into protein structures, such as the IgG2-Fc fusion MDK-703. This molecule possesses properties potentially better suited to therapeutic applications than native IL-7 or its derivatives. We compared these compounds with IL-7 for immune cell selectivity, induction of IL-7R signaling, receptor-mediated internalization, proliferation, and generation of immune cell phenotypes in human and non-human primate (NHP) peripheral blood cells in vitro; and found them to be similar in biological activity to IL-7. In cynomolgus macaques, MDK-703 exhibits a circulating half-life of 46 hr and produces sustained T-cell expansion characteristic of IL-7 treatment. In the huCD34+-engrafted NSG mouse model of the human immune system, MDK-703 induces an immune cell profile very similar to that generated by IL-7-derived compounds; including the pronounced expansion of memory T-cells, particularly the population of stem-like memory T-cells (Tscm) which may be important for anti-tumor activities reported with IL-7 treatment. Clinical administration of IL-7 and modified variants has been reported to induce anti-drug antibodies (ADAs), including IL-7 neutralizing antibodies. The novel peptide agonist reported here scores very low in predicted immunogenicity, and because the peptide lacks sequence similarity with IL-7, the problematic immunogenic neutralization of endogenous cytokine should not occur. The properties we report here implicate MDK-703 as a candidate for clinical evaluation in oncology, anti-viral and other infectious disease, vaccine enhancement, and treatment of lymphopenia.
- Published
- 2023
- Full Text
- View/download PDF