243 results on '"chordata"'
Search Results
2. Characterization of mammalian Lipocalin UTRs in silico: Predictions for their role in post-transcriptional regulation.
- Author
-
Mejias, Andres, Diez-Hermano, Sergio, Ganfornina, Maria D., Gutierrez, Gabriel, and Sanchez, Diego
- Subjects
- *
LIPOCALIN-1 , *PROTEIN binding , *LIGANDS (Biochemistry) , *PROTEIN folding , *CHORDATA - Abstract
The Lipocalin family is a group of homologous proteins characterized by its big array of functional capabilities. As extracellular proteins, they can bind small hydrophobic ligands through a well-conserved β-barrel folding. Lipocalins evolutionary history sprawls across many different taxa and shows great divergence even within chordates. This variability is also found in their heterogeneous tissue expression pattern. Although a handful of promoter regions have been previously described, studies on UTR regulatory roles in Lipocalin gene expression are scarce. Here we report a comprehensive bioinformatic analysis showing that complex post-transcriptional regulation exists in Lipocalin genes, as suggested by the presence of alternative UTRs with substantial sequence conservation in mammals, alongside a high diversity of transcription start sites and alternative promoters. Strong selective pressure could have operated upon Lipocalins UTRs, leading to an enrichment in particular sequence motifs that limit the choice of secondary structures. Mapping these regulatory features to the expression pattern of early and late diverging Lipocalins suggests that UTRs represent an additional phylogenetic signal, which may help to uncover how functional pleiotropy originated within the Lipocalin family. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
3. Functional diversity and nutritional content in a deep-sea faunal assemblage through total lipid, lipid class, and fatty acid analyses.
- Author
-
Parzanini, Camilla, Parrish, Christopher C., Hamel, Jean-François, and Mercier, Annie
- Subjects
- *
TRIGLYCERIDES , *LIPIDS , *FATTY acids , *PHOSPHOLIPIDS , *ESTERS - Abstract
Lipids are key compounds in marine ecosystems being involved in organism growth, reproduction, and survival. Despite their biological significance and ease of measurement, the use of lipids in deep-sea studies is limited, as is our understanding of energy and nutrient flows in the deep ocean. Here, a comprehensive analysis of total lipid content, and lipid class and fatty acid composition, was used to explore functional diversity and nutritional content within a deep-sea faunal assemblage comprising 139 species from 8 phyla, including the Chordata, Arthropoda, and Cnidaria. A wide range of total lipid content and lipid class composition suggested a diversified set of energy allocation strategies across taxa. Overall, phospholipid was the dominant lipid class. While triacylglycerol was present in most taxa as the main form of energy storage, a few crustaceans, fish, jellyfishes, and corals had higher levels of wax esters/steryl esters instead. Type and amount of energy reserves may reflect dietary sources and environmental conditions for certain deep-sea taxa. Conversely, the composition of fatty acids was less diverse than that of lipid class composition, and large proportions of unsaturated fatty acids were detected, consistent with the growing literature on cold-water species. In addition, levels of unsaturation increased with depth, likely suggesting an adaptive strategy to maintain normal membrane structure and function in species found in deeper waters. Although proportions of n-3 fatty acids were high across all phyla, representatives of the Chordata and Arthropoda were the main reservoirs of these essential nutrients, thus suggesting health benefits to their consumers. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
4. What drives cooperative breeding?
- Author
-
Koenig, Walter D.
- Subjects
- *
BIRD breeding , *VERTEBRATES , *BIRD bioenergetics , *CHORDATA , *INBREEDING - Abstract
Cooperative breeding, in which more than a pair of conspecifics cooperate to raise young at a single nest or brood, is widespread among vertebrates but highly variable in its geographic distribution. Particularly vexing has been identifying the ecological correlates of this phenomenon, which has been suggested to be favored in populations inhabiting both relatively stable, productive environments and in populations living under highly variable and unpredictable conditions. Griesser et al. provide a novel approach to this problem, performing a phylogenetic analysis indicating that family living is an intermediate step between nonsocial and cooperative breeding birds. They then examine the ecological and climatic conditions associated with these different social systems, concluding that cooperative breeding emerges when family living is favored in highly productive environments, followed secondarily by selection for cooperative breeding when environmental conditions deteriorate and within-year variability increases. Combined with recent work addressing the fitness consequences of cooperative breeding, Griesser et al.’s contribution stands to move the field forward by demonstrating that the evolution of complex adaptations such as cooperative breeding may only be understood when each of the steps leading to it are identified and carefully integrated. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
5. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding.
- Author
-
Andruszkiewicz, Elizabeth A., Starks, Hilary A., Chavez, Francisco P., Sassoubre, Lauren M., Block, Barbara A., and Boehm, Alexandria B.
- Subjects
- *
BIOLOGICAL monitoring , *CHORDATA , *DNA , *DEOXYRIBOSE - Abstract
Molecular analysis of environmental DNA (eDNA) can be used to assess vertebrate biodiversity in aquatic systems, but limited work has applied eDNA technologies to marine waters. Further, there is limited understanding of the spatial distribution of vertebrate eDNA in marine waters. Here, we use an eDNA metabarcoding approach to target and amplify a hypervariable region of the mitochondrial 12S rRNA gene to characterize vertebrate communities at 10 oceanographic stations spanning 45 km within the Monterey Bay National Marine Sanctuary (MBNMS). In this study, we collected three biological replicates of small volume water samples (1 L) at 2 depths at each of the 10 stations. We amplified fish mitochondrial DNA using a universal primer set. We obtained 5,644,299 high quality Illumina sequence reads from the environmental samples. The sequence reads were annotated to the lowest taxonomic assignment using a bioinformatics pipeline. The eDNA survey identified, to the lowest taxonomic rank, 7 families, 3 subfamilies, 10 genera, and 72 species of vertebrates at the study sites. These 92 distinct taxa come from 33 unique marine vertebrate families. We observed significantly different vertebrate community composition between sampling depths (0 m and 20/40 m deep) across all stations and significantly different communities at stations located on the continental shelf (<200 m bottom depth) versus in the deeper waters of the canyons of Monterey Bay (>200 m bottom depth). All but 1 family identified using eDNA metabarcoding is known to occur in MBNMS. The study informs the implementation of eDNA metabarcoding for vertebrate biomonitoring. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
6. From body scale ontogeny to species ontogeny: Histological and morphological assessment of the Late Devonian acanthodian Triazeugacanthus affinis from Miguasha, Canada.
- Author
-
Chevrinais, Marion, Sire, Jean-Yves, and Cloutier, Richard
- Subjects
- *
PALEOZOIC Era , *FISH morphology , *ONTOGENY , *FISHES , *FISH larvae - Abstract
Growth series of Palaeozoic fishes are rare because of the fragility of larval and juvenile specimens owing to their weak mineralisation and the scarcity of articulated specimens. This rarity makes it difficult to describe early vertebrate growth patterns and processes in extinct taxa. Indeed, only a few growth series of complete Palaeozoic fishes are available; however, they allow the growth of isolated elements to be described and individual growth from these isolated elements to be inferred. In addition, isolated and in situ scales are generally abundant and well-preserved, and bring information on (1) their morphology and structure relevant to phylogenetic relationships and (2) individual growth patterns and processes relative to species ontogeny. The Late Devonian acanthodian Triazeugacanthus affinis from the Miguasha Fossil-Lagerstätte preserves one of the best known fossilised ontogenies of early vertebrates because of the exceptional preservation, the large size range, and the abundance of complete specimens. Here, we present morphological, histological, and chemical data on scales from juvenile and adult specimens (scales not being formed in larvae). Histologically, Triazeugacanthus scales are composed of a basal layer of acellular bone housing Sharpey’s fibers, a mid-layer of mesodentine, and a superficial layer of ganoine. Developmentally, scales grow first through concentric addition of mesodentine and bone around a central primordium and then through superposition of ganoine layers. Ontogenetically, scales form first in the region below the dorsal fin spine, then squamation spreads anteriorly and posteriorly, and on fin webs. Phylogenetically, Triazeugacanthus scales show similarities with acanthodians (e.g. “box-in-box” growth), chondrichthyans (e.g. squamation pattern), and actinopterygians (e.g. ganoine). Scale histology and growth are interpreted in the light of a new phylogenetic analysis of gnathostomes supporting acanthodians as stem chondrichthyans. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
7. Unique diversity of acanthothoracid placoderms (basal jawed vertebrates) in the Early Devonian of the Prague Basin, Czech Republic: A new look at Radotina and Holopetalichthys.
- Author
-
Vaškaninová, Valéria and Ahlberg, Per E.
- Subjects
- *
VERTEBRATE evolution , *BIOLOGICAL classification , *PHYLOGENY , *DEVONIAN Period , *LOCHKOVIAN Stage - Abstract
The taxonomy of Early Devonian placoderm material from the Lochkovian and Pragian of the Prague basin, previously attributed to the genera Radotina and Holopetalichthys, is revised. The Pragian species Radotina tesselata Gross 1958 shares detailed similarities with the holotype of the Lochkovian Radotina kosorensis Gross 1950, which is also the holotype of the genus; the assignation of both species to Radotina is supported. However, the Lochkovian material previously attributed to Radotina kosorensis also contains two unrecognised taxa, distinguishable from Radotina at the generic level: these are here named Tlamaspis and Sudaspis. The disputed genus Holopetalichthys, synonymised with Radotina by some previous authors, is shown to be valid. Furthermore, whereas Radotina, Tlamaspis and Sudaspis can all be assigned to the group Acanthothoracii, on the basis of several features including possession of a projecting prenasal region of the endocranium, Holopetalichthys lacks such a region and is probably not an acanthothoracid. Skull roof patterns and other aspects of morphology vary greatly between these taxa. Radotina has a substantially tesselated skull roof, whereas the skull roofs of Tlamaspis and Holopetalichthys appear to lack tesserae altogether. Tlamaspis has an extremely elongated facial region and appears to lack a premedian plate. Sudaspis has a long prenasal region, but unlike Tlamaspis the postnasal face is not elongated. Past descriptions of the braincase of 'Radotina' and the skull roofs of 'Radotina' and 'Holopetalichthys' incorporate data from more than one taxon, giving rise to spurious characterisations including an apparently extreme degree of skull roof variability. These descriptions should all be disregarded. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
8. A new osteichthyan from the late Silurian of Yunnan, China.
- Author
-
Choo, Brian, Zhu, Min, Qu, Qingming, Yu, Xiaobo, Jia, Liantao, and Zhao, Wenjin
- Subjects
- *
FOSSIL animals , *SILURIAN Period , *ANIMAL classification , *ANIMAL morphology - Abstract
Our understanding of early gnathostome evolution has been hampered by a generally scant fossil record beyond the Devonian. Recent discoveries from the late Silurian Xiaoxiang Fauna of Yunnan, China, have yielded significant new information, including the earliest articulated osteichthyan fossils from the Ludlow-aged Kuanti Formation. Here we describe the partial postcranium of a new primitive bony fish from the Kuanti Formation that represents the second known taxon of pre-Devonian osteichthyan revealing articulated remains. The new form, Sparalepis tingi gen. et sp. nov., displays similarities with Guiyu and Psarolepis, including a spine-bearing pectoral girdle and a placoderm-like dermal pelvic girdle, a structure only recently identified in early osteichthyans. The squamation with particularly thick rhombic scales shares an overall morphological similarity to that of Psarolepis. However, the anterior flank scales of Sparalepis possess an unusual interlocking system of ventral bulges embraced by dorsal concavities on the outer surfaces. A phylogenetic analysis resolves Sparalepis within a previously recovered cluster of stem-sarcopterygians including Guiyu, Psarolepis and Achoania. The high diversity of osteichthyans from the Ludlow of Yunnan strongly contrasts with other Silurian vertebrate assemblages, suggesting that the South China block may have been an early center of diversification for early gnathostomes, well before the advent of the Devonian “Age of Fishes”. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
9. The Pax gene family: Highlights from cephalopods.
- Author
-
Navet, Sandra, Buresi, Auxane, Baratte, Sébastien, Andouche, Aude, Bonnaud-Ponticelli, Laure, and Bassaglia, Yann
- Subjects
- *
CEPHALOPODA , *DATABASES , *CHORDATA , *HOMEOBOX proteins , *MATERIAL plasticity - Abstract
Pax genes play important roles in Metazoan development. Their evolution has been extensively studied but Lophotrochozoa are usually omitted. We addressed the question of Pax paralog diversity in Lophotrochozoa by a thorough review of available databases. The existence of six Pax families (Pax1/9, Pax2/5/8, Pax3/7, Pax4/6, Paxβ, PoxNeuro) was confirmed and the lophotrochozoan Paxβ subfamily was further characterized. Contrary to the pattern reported in chordates, the Pax2/5/8 family is devoid of homeodomain in Lophotrochozoa. Expression patterns of the three main pax classes (pax2/5/8, pax3/7, pax4/6) during Sepia officinalis development showed that Pax roles taken as ancestral and common in metazoans are modified in S. officinalis, most likely due to either the morphological specificities of cephalopods or to their direct development. Some expected expression patterns were missing (e.g. pax6 in the developing retina), and some expressions in unexpected tissues have been found (e.g. pax2/5/8 in dermal tissue and in gills). This study underlines the diversity and functional plasticity of Pax genes and illustrates the difficulty of using probable gene homology as strict indicator of homology between biological structures. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
10. Drosophila melanogaster as a model for studies related to the toxicity of lavender, ginger and copaiba essential oils.
- Author
-
Bernardes LMM, Malta SM, Rodrigues TS, Covizzi LF, Rosa RB, Justino AB, Teixeira RR, Espíndola FS, Oliveira Dos Santos D, Vieira CU, and Vieira da Silva M
- Subjects
- Animals, Drosophila melanogaster, Plant Oils toxicity, Plant Oils chemistry, Brain, Zingiber officinale chemistry, Lavandula chemistry, Oils, Volatile toxicity, Oils, Volatile chemistry, Chordata
- Abstract
This study addresses the current trend of essential oils in alternative medicine using the non-chordate model Drosophila melanogaster. Following the three R's principles, it proposes non-chordate models to fill knowledge gaps on essential oil toxicity. Copaiba, lavender, and ginger essential oils are evaluated for effects on D. melanogaster lifespan, climbing ability, and brain structure, while their anti-inflammatory properties are also analyzed. Results show dose-related differences: higher concentrations (0.25% v/v) cause brain deterioration and impaired climbing, while lower concentrations (0.0625% v/v for copaiba and ginger; 0.125% for lavender) have no effect on climbing or brain structure. Lavender oil significantly extends lifespan and maintains anti-inflammatory activity when ingested, underscoring its therapeutic potential. These findings highlight the importance of D. melanogaster as a model for studying essential oil properties, potentially replacing chordate models. In addition, this research advances alternative remedies for currently incurable diseases, with lavender oil emerging as a promising candidate for drug discovery., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2023 Bernardes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF
11. Molecular characterization of nervous system organization in the hemichordate acorn worm Saccoglossus kowalevskii.
- Author
-
Andrade López JM, Pani AM, Wu M, Gerhart J, and Lowe CJ
- Subjects
- Animals, Cognition, Animals, Genetically Modified, Axons, Neurons, Chordata
- Abstract
Hemichordates are an important group for investigating the evolution of bilaterian nervous systems. As the closest chordate outgroup with a bilaterally symmetric adult body plan, hemichordates are particularly informative for exploring the origins of chordates. Despite the importance of hemichordate neuroanatomy for testing hypotheses on deuterostome and chordate evolution, adult hemichordate nervous systems have not been comprehensively described using molecular techniques, and classic histological descriptions disagree on basic aspects of nervous system organization. A molecular description of hemichordate nervous system organization is important for both anatomical comparisons across phyla and for attempts to understand how conserved gene regulatory programs for ectodermal patterning relate to morphological evolution in deep time. Here, we describe the basic organization of the adult hemichordate Saccoglossus kowalevskii nervous system using immunofluorescence, in situ hybridization, and transgenic reporters to visualize neurons, neuropil, and key neuronal cell types. Consistent with previous descriptions, we found the S. kowalevskii nervous system consists of a pervasive nerve plexus concentrated in the anterior, along with nerve cords on both the dorsal and ventral side. Neuronal cell types exhibited clear anteroposterior and dorsoventral regionalization in multiple areas of the body. We observed spatially demarcated expression patterns for many genes involved in synthesis or transport of neurotransmitters and neuropeptides but did not observe clear distinctions between putatively centralized and decentralized portions of the nervous system. The plexus shows regionalized structure and is consistent with the proboscis base as a major site for information processing rather than the dorsal nerve cord. In the trunk, there is a clear division of cell types between the dorsal and ventral cords, suggesting differences in function. The absence of neural processes crossing the basement membrane into muscle and extensive axonal varicosities suggest that volume transmission may play an important role in neural function. These data now facilitate more informed neural comparisons between hemichordates and other groups, contributing to broader debates on the origins and evolution of bilaterian nervous systems., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2023 Andrade López et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF
12. The internal cranial anatomy of Romundina stellina Ørvig, 1975 (Vertebrata, Placodermi, Acanthothoraci) and the origin of jawed vertebrates—Anatomical atlas of a primitive gnathostome.
- Author
-
Dupret, Vincent, Sanchez, Sophie, Goujet, Daniel, and Ahlberg, Per Erik
- Subjects
- *
SKULL base , *PLACODERMI , *VERTEBRATES , *NEUROCRANIAL restructuring , *MORPHOLOGY - Abstract
Placoderms are considered as the first jawed vertebrates and constitute a paraphyletic group in the stem-gnathostome grade. The acanthothoracid placoderms are among the phylogenetically most basal and morphologically primitive gnathostomes, but their neurocranial anatomy is poorly understood. Here we present a near-complete three-dimensional skull of Romundina stellina, a small Early Devonian acanthothoracid from the Canadian Arctic Archipelago, scanned with propagation phase contrast microtomography at a 7.46 μm isotropic voxel size at the European Synchrotron Radiation Facility, Grenoble, France. This is the first model of an early gnathostome skull produced using this technique, and as such represents a major advance in objectivity compared to past descriptions of placoderm neurocrania on the basis of grinding series. Despite some loss of material along an oblique crack, most of the internal structures are remarkably preserved, and most of the missing structures can be reconstructed by symmetry. This virtual approach offers the possibility to connect with certainty all the external foramina to the blood and nerve canals and the central structures, and thus identify accurate homologies without destroying the specimen. The high level of detail enables description of the main arterial, venous and nerve canals of the skull, and other perichondrally ossified endocranial structures such as the palatoquadrate articulations, the endocranial cavity and the inner ear cavities. The braincase morphology appears less extreme than that of Brindabellaspis, and is in some respects more reminiscent of a basal arthrodire such as Kujdanowiaspis. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
13. Surveying Europe’s Only Cave-Dwelling Chordate Species (Proteus anguinus) Using Environmental DNA.
- Author
-
Vörös, Judit, Márton, Orsolya, Schmidt, Benedikt R., Gál, Júlia Tünde, and Jelić, Dušan
- Subjects
- *
CHORDATA , *MOLECULAR biology , *CAVE animals , *ANIMAL species , *METEOROLOGICAL precipitation - Abstract
In surveillance of subterranean fauna, especially in the case of rare or elusive aquatic species, traditional techniques used for epigean species are often not feasible. We developed a non-invasive survey method based on environmental DNA (eDNA) to detect the presence of the red-listed cave-dwelling amphibian, Proteus anguinus, in the caves of the Dinaric Karst. We tested the method in fifteen caves in Croatia, from which the species was previously recorded or expected to occur. We successfully confirmed the presence of P. anguinus from ten caves and detected the species for the first time in five others. Using a hierarchical occupancy model we compared the availability and detection probability of eDNA of two water sampling methods, filtration and precipitation. The statistical analysis showed that both availability and detection probability depended on the method and estimates for both probabilities were higher using filter samples than for precipitation samples. Combining reliable field and laboratory methods with robust statistical modeling will give the best estimates of species occurrence. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
14. Multiple Evolutionary Origins of Ubiquitous Cu2+ and Zn2+ Binding in the S100 Protein Family.
- Author
-
Wheeler, Lucas C., Donor, Micah T., Prell, James S., and Harms, Michael J.
- Subjects
- *
TRANSITION metal compounds , *COPPER ions , *MOLECULAR biology , *BIOLOGICAL evolution , *GENETIC mutation , *STRUCTURAL equation modeling , *ISOTHERMAL titration calorimetry - Abstract
The S100 proteins are a large family of signaling proteins that play critical roles in biology and disease. Many S100 proteins bind Zn2+, Cu2+, and/or Mn2+ as part of their biological functions; however, the evolutionary origins of binding remain obscure. One key question is whether divalent transition metal binding is ancestral, or instead arose independently on multiple lineages. To tackle this question, we combined phylogenetics with biophysical characterization of modern S100 proteins. We demonstrate an earlier origin for established S100 subfamilies than previously believed, and reveal that transition metal binding is widely distributed across the tree. Using isothermal titration calorimetry, we found that Cu2+ and Zn2+ binding are common features of the family: the full breadth of human S100 paralogs—as well as two early-branching S100 proteins found in the tunicate Oikopleura dioica—bind these metals with μM affinity and stoichiometries ranging from 1:1 to 3:1 (metal:protein). While binding is consistent across the tree, structural responses to binding are quite variable. Further, mutational analysis and structural modeling revealed that transition metal binding occurs at different sites in different S100 proteins. This is consistent with multiple origins of transition metal binding over the evolution of this protein family. Our work reveals an evolutionary pattern in which the overall phenotype of binding is a constant feature of S100 proteins, even while the site and mechanism of binding is evolutionarily labile. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
15. The Global Diversity of Hemichordata.
- Author
-
Tassia, Michael G., Cannon, Johanna T., Konikoff, Charlotte E., Shenkar, Noa, Halanych, Kenneth M., and Swalla, Billie J.
- Subjects
- *
HEMICHORDATA , *INVERTEBRATE diversity , *INVERTEBRATE phylogeny , *CLASSIFICATION of invertebrates , *SPECIES distribution , *ENTEROPNEUSTA - Abstract
Phylum Hemichordata, composed of worm-like Enteropneusta and colonial Pterobranchia, has been reported to only contain about 100 species. However, recent studies of hemichordate phylogeny and taxonomy suggest the species number has been largely underestimated. One issue is that species must be described by experts, and historically few taxonomists have studied this group of marine invertebrates. Despite this previous lack of coverage, interest in hemichordates has piqued in the past couple of decades, as they are critical to understanding the evolution of chordates–as acorn worms likely resemble the deuterostome ancestor more closely than any other extant animal. This review provides an overview of our current knowledge of hemichordates, focusing specifically on their global biodiversity, geographic distribution, and taxonomy. Using information available in the World Register of Marine Species and published literature, we assembled a list of 130 described, extant species. The majority (83%) of these species are enteropneusts, and more taxonomic descriptions are forthcoming. Ptychoderidae contained the greatest number of species (41 species), closely followed by Harrimaniidae (40 species), of the recognized hemichordate families. Hemichordates are found throughout the world’s oceans, with the highest reported numbers by regions with marine labs and diligent taxonomic efforts (e.g. North Pacific and North Atlantic). Pterobranchs are abundant in Antarctica, but have also been found at lower latitudes. We consider this a baseline report and expect new species of Hemichordata will continue to be discovered and described as new marine habitats are characterized and explored. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
16. Early Gnathostome Phylogeny Revisited: Multiple Method Consensus.
- Author
-
Qiao, Tuo, King, Benedict, Long, John A., Ahlberg, Per E., and Zhu, Min
- Subjects
- *
VERTEBRATE phylogeny , *PLACODERMI , *PARSIMONIOUS models , *LIKELIHOOD ratio tests , *BAYESIAN analysis - Abstract
A series of recent studies recovered consistent phylogenetic scenarios of jawed vertebrates, such as the paraphyly of placoderms with respect to crown gnathostomes, and antiarchs as the sister group of all other jawed vertebrates. However, some of the phylogenetic relationships within the group have remained controversial, such as the positions of Entelognathus, ptyctodontids, and the Guiyu-lineage that comprises Guiyu, Psarolepis and Achoania. The revision of the dataset in a recent study reveals a modified phylogenetic hypothesis, which shows that some of these phylogenetic conflicts were sourced from a few inadvertent miscodings. The interrelationships of early gnathostomes are addressed based on a combined new dataset with 103 taxa and 335 characters, which is the most comprehensive morphological dataset constructed to date. This dataset is investigated in a phylogenetic context using maximum parsimony (MP), Bayesian inference (BI) and maximum likelihood (ML) approaches in an attempt to explore the consensus and incongruence between the hypotheses of early gnathostome interrelationships recovered from different methods. Our findings consistently corroborate the paraphyly of placoderms, all ‘acanthodians’ as a paraphyletic stem group of chondrichthyans, Entelognathus as a stem gnathostome, and the Guiyu-lineage as stem sarcopterygians. The incongruence using different methods is less significant than the consensus, and mainly relates to the positions of the placoderm Wuttagoonaspis, the stem chondrichthyan Ramirosuarezia, and the stem osteichthyan Lophosteus—the taxa that are either poorly known or highly specialized in character complement. Given that the different performances of each phylogenetic approach, our study provides an empirical case that the multiple phylogenetic analyses of morphological data are mutually complementary rather than redundant. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
17. The 3-D Structural Basis for the Pgi Genotypic Differences in the Performance of the Butterfly Melitaea cinxia at Different Temperatures.
- Author
-
Li, Yuan and Andersson, Stefan
- Subjects
- *
MELITAEA cinxia , *BIOLOGICAL fitness , *GENOTYPE-environment interaction , *EFFECT of heat on insects , *GLUCOSE phosphate isomerase , *PROTEIN structure , *HOMOLOGY (Biochemistry) - Abstract
Although genotype-by-environment interaction has long been used to unveil the genetic variation that affects Darwinian fitness, the mechanisms underlying the interaction usually remain unknown. Genetic variation at the dimeric glycolytic enzyme phosphoglucoisomerase (Pgi) has been observed to interact with temperature to explain the variation in the individual performance of the butterfly Melitaea cinxia. At relatively high temperature, individuals with Pgi-non-f genotypes generally surpass those with Pgi-f genotypes, while the opposite applies at relatively low temperature. In this study, we did protein structure predictions and BlastP homology searches with the aim to understand the structural basis for this temperature-dependent difference in the performance of M. cinxia. Our results show that, at amino acid (AA) site 372, one of the two sites that distinguish Pgi-f (the translated polypeptide of the Pgi-f allele) from Pgi-non-f (the translated polypeptide of the Pgi-non-f allele), the Pgi-non-f-related residue strengthens an electrostatic attraction between a pair of residues (Glu373-Lys472) that are from different monomers, compared to the Pgi-f-related residue. Further, BlastP searches of animal protein sequences reveal a dramatic excess of electrostatically attractive combinations of the residues at the Pgi AA sites equivalent to sites 373 and 472 in M. cinxia. This suggests that factors enhancing the inter-monomer interaction between these two sites, and therefore helping the tight association of two Pgi monomers, are favourable. Our homology-modelling results also show that, at the second AA site that distinguishes Pgi-f from Pgi-non-f in M. cinxia, the Pgi-non-f-related residue is more entropy-favourable (leading to higher structural stability) than the Pgi-f-related residue. To sum up, this study suggests a higher structural stability of the protein products of the Pgi-non-f genotypes than those of the Pgi-f genotypes, which may explain why individuals carrying Pgi-non-f genotypes outperform those carrying Pgi-f genotypes at stressful high temerature. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
18. Origin and evolutionary landscape of Nr2f transcription factors across Metazoa
- Author
-
Joshua S. Waxman and Ugo Coppola
- Subjects
Subfamily ,Invertebrate Genomics ,Chordata ,Bilateria ,Zebrafish ,Phylogeny ,Data Management ,Multidisciplinary ,Mammalian Genomics ,Genome ,Vertebrate ,Eukaryota ,Phylogenetic Analysis ,Genomics ,Animal Models ,Exons ,Phylogenetics ,Experimental Organism Systems ,Osteichthyes ,Molecular phylogenetics ,Vertebrates ,Medicine ,Research Article ,Computer and Information Sciences ,Architecture domain ,NF-E2-Related Factor 2 ,Science ,Biology ,Research and Analysis Methods ,Evolution, Molecular ,Model Organisms ,Gnathostomata ,biology.animal ,Genetics ,Gene family ,Animals ,Evolutionary Systematics ,Gene ,Synteny ,Taxonomy ,Vertebrata ,Evolutionary Biology ,Organisms ,Biology and Life Sciences ,Computational Biology ,biology.organism_classification ,Genome Analysis ,Invertebrates ,Introns ,Fish ,Evolutionary biology ,Animal Genomics ,Animal Taxonomy ,Animal Studies ,Zoology - Abstract
Background Nuclear Receptor Subfamily 2 Group F (Nr2f) orphan nuclear hormone transcription factors (TFs) are fundamental regulators of many developmental processes in invertebrates and vertebrates. Despite the importance of these TFs throughout metazoan development, previous work has not clearly outlined their evolutionary history. Results We integrated molecular phylogeny with comparisons of intron/exon structure, domain architecture, and syntenic conservation to define critical evolutionary events that distinguish the Nr2f gene family in Metazoa. Our data indicate that a single ancestral eumetazoan Nr2f gene predated six main Bilateria subfamilies, which include single Nr2f homologs, here referred to as Nr2f1/2/5/6, that are present in invertebrate protostomes and deuterostomes, Nr2f1/2 homologs in agnathans, and Nr2f1, Nr2f2, Nr2f5, and Nr2f6 orthologs that are found in gnathostomes. Four cnidarian Nr2f1/2/5/6 and three agnathan Nr2f1/2 members are each due to independent expansions, while the vertebrate Nr2f1/Nr2f2 and Nr2f5/Nr2f6 members each form paralogous groups that arose from the established series of whole-genome duplications (WGDs). Nr2f6 members are the most divergent Nr2f subfamily in gnathostomes. Interestingly, in contrast to the other gnathostome Nr2f subfamilies, Nr2f5 has been independently lost in numerous vertebrate lineages. Furthermore, our analysis shows there are differential expansions and losses of Nr2f genes in teleosts following their additional rounds of WGDs. Conclusion Overall, our analysis of Nr2f gene evolution helps to reveal the origins and previously unrecognized relationships of this ancient TF family, which may allow for greater insights into the conservation of Nr2f functions that shape Metazoan body plans.
- Published
- 2021
19. Phylogenetic analyses of 5-hydroxytryptamine 3 (5-HT3) receptors in Metazoa.
- Author
-
Rao STRB, Turek I, and Irving HR
- Subjects
- Animals, Humans, Phylogeny, Serotonin, Ecosystem, Ligands, Receptors, Serotonin, 5-HT3, Chordata
- Abstract
The 5-hydroxytrptamine 3 (5-HT3) receptor is a member of the 'Cys-loop' family and the only pentameric ligand gated ion channel among the serotonin receptors. 5-HT3 receptors play an important role in controlling growth, development, and behaviour in animals. Several 5-HT3 receptor antagonists are used to treat diseases (e.g., irritable bowel syndrome, nausea and emesis). Humans express five different subunits (A-E) enabling a variety of heteromeric receptors to form but all contain 5HT3A subunits. However, the information available about the 5-HT3 receptor subunit occurrence among the metazoan lineages is minimal. In the present article we searched for 5-HT3 receptor subunit homologs from different phyla in Metazoa. We identified more than 1000 5-HT3 receptor subunits in Metazoa in different phyla and undertook simultaneous phylogenetic analysis of 526 5HT3A, 358 5HT3B, 239 5HT3C, 70 5HT3D, and 173 5HT3E sequences. 5-HT3 receptor subunits were present in species belonging to 11 phyla: Annelida, Arthropoda, Chordata, Cnidaria, Echinodermata, Mollusca, Nematoda, Orthonectida, Platyhelminthes, Rotifera and Tardigrada. All subunits were most often identified in Chordata phylum which was strongly represented in searches. Using multiple sequence alignment, we investigated variations in the ligand binding region of the 5HT3A subunit protein sequences in the metazoan lineage. Several critical amino acid residues important for ligand binding (common structural features) are commonly present in species from Nematoda and Platyhelminth gut parasites through to Chordata. Collectively, this better understanding of the 5-HT3 receptor evolutionary patterns raises possibilities of future pharmacological challenges facing Metazoa including effects on parasitic and other species in ecosystems that contain 5-HT3 receptor ligands., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2023 Rao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF
20. Evolution of the Role of RA and FGF Signals in the Control of Somitogenesis in Chordates.
- Author
-
Bertrand, Stéphanie, Aldea, Daniel, Oulion, Silvan, Subirana, Lucie, de Lera, Angel R., Somorjai, Ildiko, and Escriva, Hector
- Subjects
- *
SOMITOGENESIS , *BIOLOGICAL evolution , *FIBROBLAST growth factors , *CHORDATA , *CELL communication - Abstract
During vertebrate development, the paraxial mesoderm becomes segmented, forming somites that will give rise to dermis, axial skeleton and skeletal muscles. Although recently challenged, the "clock and wavefront" model for somitogenesis explains how interactions between several cell-cell communication pathways, including the FGF, RA, Wnt and Notch signals, control the formation of these bilateral symmetric blocks. In the cephalochordate amphioxus, which belongs to the chordate phylum together with tunicates and vertebrates, the dorsal paraxial mesendoderm also periodically forms somites, although this process is asymmetric and extends along the whole body. It has been previously shown that the formation of the most anterior somites in amphioxus is dependent upon FGF signalling. However, the signals controlling somitogenesis during posterior elongation in amphioxus are still unknown. Here we show that, contrary to vertebrates, RA and FGF signals act independently during posterior elongation and that they are not mandatory for posterior somites to form. Moreover, we show that RA is not able to buffer the left/right asymmetry machinery that is controlled through the asymmetric expression of Nodal pathway actors. Our results give new insights into the evolution of the somitogenesis process in chordates. They suggest that RA and FGF pathways have acquired specific functions in the control of somitogenesis in vertebrates. We propose that the "clock and wavefront" system was selected specifically in vertebrates in parallel to the development of more complex somite-derived structures but that it was not required for somitogenesis in the ancestor of chordates. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
21. Micro-CT Study of Rhynchonkos stovalli (Lepospondyli, Recumbirostra), with Description of Two New Genera.
- Author
-
Szostakiwskyj, Matt, Pardo, Jason D., and Anderson, Jason S.
- Subjects
- *
COMPUTED tomography , *STATISTICAL hypothesis testing , *CAECILIANS , *CELL morphology , *CHORDATA - Abstract
The Early Permian recumbirostran lepospondyl Rhynchonkos stovalli has been identified as a possible close relative of caecilians due to general similarities in skull shape as well as similar robustness of the braincase, a hypothesis that implies the polyphyly of extant lissamphibians. In order to better assess this phylogenetic hypothesis, we studied the morphology of the holotype and three specimens previously attributed to R. stovalli. With the use of micro-computed x-ray tomography (μCT) we are able to completely describe the external and internal cranial morphology of these specimens, dramatically revising our knowledge of R. stovalli and recognizing two new taxa, Aletrimyti gaskillae gen et sp. n. and Dvellacanus carrolli gen et sp. n. The braincases of R. stovalli, A. gaskillae, and D. carrolli are described in detail, demonstrating detailed braincase morphology and new information on the recumbirostran supraoccipital bone. All three taxa show fossorial adaptations in the braincase, sutural articulations of skull roof bones, and in the lower jaw, but variation in cranial morphology between these three taxa may reflect different modes of head-first burrowing behaviors and capabilities. We revisit the homology of the supraoccipital, median anterior bone, and temporal bone of recumbirostrans, and discuss implications of alternate interpretations of the homology of these elements. Finally, we evaluate the characteristics previously used to unite Rhynchonkos stovalli with caecilians in light of these new data. These proposed similarities are more ambiguous than previous descriptions suggest, and result from the composite nature of previous descriptions, ambiguities in external morphology, and functional convergence between recumbirostrans and caecilians for head-first burrowing. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
22. Allodaposuchus palustris sp. nov. from the Upper Cretaceous of Fumanya (South-Eastern Pyrenees, Iberian Peninsula): Systematics, Palaeoecology and Palaeobiogeography of the Enigmatic Allodaposuchian Crocodylians.
- Author
-
Blanco, Alejandro, Puértolas-Pascual, Eduardo, Marmi, Josep, Vila, Bernat, and Sellés, Albert G.
- Subjects
- *
CROCODILIANS , *CRETACEOUS paleoecology , *CRETACEOUS paleogeography , *REPTILE phylogeny , *REPTILE evolution , *MUDSTONE , *ANIMAL species - Abstract
The controversial European genus Allodaposuchus is currently composed of two species (A. precedens, A. subjuniperus) and it has been traditionally considered a basal eusuchian clade of crocodylomorphs. In the present work, the new species A. palustris is erected on the base of cranial and postcranial remains from the lower Maastrichtian of the southern Pyrenees. Phylogenetic analyses here including both cranial and postcranial data support the hypothesis that Allodaposuchus is included within Crocodylia. The studied specimen suggests little change in postcranial skeleton along the evolutionary history of crocodylians, except for some bone elements such as the axis, the first caudal vertebra and the ilium. The specimen was found in an organic mudstone corresponding to a coastal wetland environment. Thus, A. palustris from Fumanya is the first Allodaposuchus reported in lacustrine-palustrine settings that expand the ecological range for this genus. The S-DIVA palaeobiogeographic reconstruction of ancestral area suggests that early members of Crocodylia rapidly widespread for the Northern Hemisphere landmasses no later than the Campanian, leading the apparition of endemic groups. In that way “Allodaposuchia” represents an endemic European clade probably originated in the Ibero-Armorican domain in the late Campanian and dispersed by the Southern European archipelago prior to the early Maastrichtian. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
23. Independent Transitions between Monsoonal and Arid Biomes Revealed by Systematic Revison of a Complex of Australian Geckos (Diplodactylus; Diplodactylidae).
- Author
-
Oliver, Paul M., Couper, Patrick J., and Pepper, Mitzy
- Subjects
- *
BIOMES , *GECKOS , *NEOGENE Period , *BIOGEOGRAPHY , *ARID regions - Abstract
How the widespread expansion and intensification of aridity through the Neogene has shaped the Austral biota is a major question in Antipodean biogeography. Lineages distributed across wide aridity gradients provide opportunities to examine the timing, frequency, and direction of transitions between arid and mesic regions. Here, we use molecular genetics and morphological data to investigate the systematics and biogeography of a nominal Australian gecko species (Diplodactylus conspicillatus sensu lato) with a wide distribution spanning most of the Australian Arid Zone (AAZ) and Monsoonal Tropics (AMT). Our data support a minimum of seven genetically distinct and morphologically diagnosable taxa; we thus redefine the type species, ressurrect three names from synonymy, and describe three new species. Our inferred phylogeny suggests the history and diversification of lineages in the AAZ and AMT are intimately linked, with evidence of multiple independent interchanges since the late Miocene. However, despite this shared history, related lineages in these two regions also show evidence of broadly contrasting intra-regional responses to aridification; vicarance and speciation in older and increasingly attenuated mesic regions, versus a more dynamic history including independent colonisations and recent range expansions in the younger AAZ. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
24. A New Species of Muscicapa Flycatcher from Sulawesi, Indonesia.
- Author
-
Harris, J. Berton C., Rasmussen, Pamela C., Yong, Ding Li, Prawiradilaga, Dewi M., Putra, Dadang Dwi, Round, Philip D., and Rheindt, Frank E.
- Subjects
- *
MUSCICAPA , *BIRD morphology , *BIRD ecology , *GENETICS , *BIRDS , *BIRD habitats - Abstract
The Indonesian island of Sulawesi, a globally important hotspot of avian endemism, has been relatively poorly studied ornithologically, to the extent that several new bird species from the region have been described to science only recently, and others have been observed and photographed, but never before collected or named to science. One of these is a new species of Muscicapa flycatcher that has been observed on several occasions since 1997. We collected two specimens in Central Sulawesi in 2012, and based on a combination of morphological, vocal and genetic characters, we describe the new species herein, more than 15 years after the first observations. The new species is superficially similar to the highly migratory, boreal-breeding Gray-streaked Flycatcher Muscicapa griseisticta, which winters in Sulawesi; however, the new species differs strongly from M. griseisticta in several morphological characters, song, and mtDNA. Based on mtDNA, the new species is only distantly related to M. griseisticta, instead being a member of the M. dauurica clade. The new species is evidently widely distributed in lowland and submontane forest throughout Sulawesi. This wide distribution coupled with the species' apparent tolerance of disturbed habitats suggests it is not currently threatened with extinction. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
25. A New Species of the Basal “Kangaroo” Balbaroo and a Re-Evaluation of Stem Macropodiform Interrelationships.
- Author
-
Black, Karen H., Travouillon, Kenny J., Den Boer, Wendy, Kear, Benjamin P., Cooke, Bernard N., and Archer, Michael
- Subjects
- *
KANGAROOS , *MIOCENE Epoch , *LIMESTONE , *COMPETITION (Biology) , *MOLARS - Abstract
Exceptionally well-preserved skulls and postcranial elements of a new species of the plesiomorphic stem macropodiform Balbaroo have been recovered from middle Miocene freshwater limestone deposits in the Riversleigh World Heritage Area of northwestern Queensland, Australia. This constitutes the richest intraspecific sample for any currently known basal “kangaroo”, and, along with additional material referred to Balbaroo fangaroo, provides new insights into structural variability within the most prolific archaic macropodiform clade – Balbaridae. Qualitative and metric evaluations of taxonomic boundaries demonstrate that the previously distinct species Nambaroo bullockensis is a junior synonym of B. camfieldensis. Furthermore, coupled Maximum Parsimony and Bayesian phylogenetic analyses reveal that our new Balbaroo remains represent the most derived member of the Balbaroo lineage, and are closely related to the middle Miocene B. camfieldensis, which like most named balbarid species is identifiable only from isolated jaws. The postcranial elements of Balbaroo concur with earlier finds of the stratigraphically oldest balbarid skeleton, Nambaroo gillespieae, and suggest that quadrupedal progression was a primary gait mode as opposed to bipedal saltation. All Balbaroo spp. have low-crowned bilophodont molars, which are typical for browsing herbivores inhabiting the densely forested environments envisaged for middle Miocene northeastern Australia. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
26. Early Chordate Origin of the Vertebrate Integrin αI Domains.
- Author
-
Chouhan, Bhanupratap Singh, Käpylä, Jarmo, Denessiouk, Konstantin, Denesyuk, Alexander, Heino, Jyrki, and Johnson, Mark S.
- Subjects
- *
CHORDATA , *INTEGRINS , *COLLAGEN-binding proteins , *VERTEBRATES , *OSTEICHTHYES , *TUNICATA - Abstract
Half of the 18 human integrins α subunits have an inserted αI domain yet none have been observed in species that have diverged prior to the appearance of the urochordates (ascidians). The urochordate integrin αI domains are not human orthologues but paralogues, but orthologues of human αI domains extend throughout later-diverging vertebrates and are observed in the bony fish with duplicate isoforms. Here, we report evidence for orthologues of human integrins with αI domains in the agnathostomes (jawless vertebrates) and later diverging species. Sequence comparisons, phylogenetic analyses and molecular modeling show that one nearly full-length sequence from lamprey and two additional fragments include the entire integrin αI domain region, have the hallmarks of collagen-binding integrin αI domains, and we show that the corresponding recombinant proteins recognize the collagen GFOGER motifs in a metal dependent manner, unlike the α1I domain of the ascidian C. intestinalis. The presence of a functional collagen receptor integrin αI domain supports the origin of orthologues of the human integrins with αI domains prior to the earliest diverging extant vertebrates, a domain that has been conserved and diversified throughout the vertebrate lineage. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
27. Molecular Variation in AVP and AVPR1a in New World Monkeys (Primates, Platyrrhini): Evolution and Implications for Social Monogamy.
- Author
-
Ren, Dongren, Chin, Kelvin R., and French, Jeffrey A.
- Subjects
- *
NEUROPEPTIDES , *VASOPRESSIN , *MONOGAMOUS relationships , *CEBIDAE , *ATELIDAE - Abstract
The neurohypophysial hormone arginine vasopressin (AVP) plays important roles in fluid regulation and vascular resistance. Differences in AVP receptor expression, particularly mediated through variation in the noncoding promoter region of the primary receptor for AVP (AVPR1a), may play a role in social phenotypes, particularly social monogamy, in rodents and humans. Among primates, social monogamy is rare, but is common among New World monkeys (NWM). AVP is a nonapeptide and generally conserved among eutherian mammals, although a recent paper demonstrated that some NWM species possess a novel form of the related neuropeptide hormone, oxytocin. We therefore characterized variation in the AVP and AVPR1a genes in 22 species representing every genus in the three major platyrrhine families (Cebidae, Atelidae and Pitheciidae). For AVP, a total of 16 synonymous substitutions were detected in 15 NWM species. No non-synonymous substitutions were noted, hence, AVP is conserved in NWM. By contrast, relative to the human AVPR1a, 66 predicted amino acids (AA) substitutions were identified in NWM. The AVPR1a N-terminus (ligand binding domain), third intracellular (G-protein binding domain), and C-terminus were variable among species. Complex evolution of AVPR1a is also apparent in NWM. A molecular phylogenetic tree inferred from AVPR1a coding sequences revealed some consensus taxonomic separation by families, but also a mixed group composed of genera from all three families. The overall dN/dS ratio of AVPR1a was 0.11, but signals of positive selection in distinct AVPR1a regions were observed, including the N-terminus, in which we identified six potential positive selection sites. AA substitutions at positions 241, 319, 399 and 409 occurred uniquely in marmosets and tamarins. Our results enhance the appreciation of genetic diversity in the mammalian AVP/AVPR1a system, and set the stage for molecular modeling of the neurohypophyseal hormones and social behavior in primates. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
28. Conservation Action Based on Threatened Species Capture Taxonomic and Phylogenetic Richness in Breeding and Wintering Populations of Central Asian Birds.
- Author
-
Schweizer, Manuel, Ayé, Raffael, Kashkarov, Roman, and Roth, Tobias
- Subjects
- *
BIRD conservation , *BIRD phylogeny , *BIRD classification , *BIRD breeding , *BIRD populations , *BIRD diversity - Abstract
Although phylogenetic diversity has been suggested to be relevant from a conservation point of view, its role is still limited in applied nature conservation. Recently, the practice of investing conservation resources based on threatened species was identified as a reason for the slow integration of phylogenetic diversity in nature conservation planning. One of the main arguments is based on the observation that threatened species are not evenly distributed over the phylogenetic tree. However this argument seems to dismiss the fact that conservation action is a spatially explicit process, and even if threatened species are not evenly distributed over the phylogenetic tree, the occurrence of threatened species could still indicate areas with above average phylogenetic diversity and consequently could protect phylogenetic diversity. Here we aim to study the selection of important bird areas in Central Asia, which were nominated largely based on the presence of threatened bird species. We show that although threatened species occurring in Central Asia do not capture phylogenetically more distinct species than expected by chance, the current spatially explicit conservation approach of selecting important bird areas covers above average taxonomic and phylogenetic diversity of breeding and wintering birds. We conclude that the spatially explicit processes of conservation actions need to be considered in the current discussion of whether new prioritization methods are needed to complement conservation action based on threatened species. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
29. Redescription and Phylogenetic Analysis of the Mandible of an Enigmatic Pennsylvanian (Late Carboniferous) Tetrapod from Nova Scotia, and the Lability of Meckelian Jaw Ossification.
- Author
-
Sookias, Roland B., Böhmer, Christine, and Clack, Jennifer A.
- Subjects
- *
TETRAPODS , *CHORDATA , *CARBONIFEROUS Period , *MANDIBULAR condyle , *PROCESSUS coronoideus mandibulae - Abstract
The lower jaw of an unidentified Pennsylvanian (Late Carboniferous) tetrapod from Nova Scotia – the “Parrsboro jaw”- is redescribed in the light of recent tetrapod discoveries and work on evolution of tetrapod mandibular morphology and placed for the first time in a numerical cladistics analysis. All phylogenetic analyses place the jaw in a crownward polytomy of baphetids, temnospondyls, and embolomeres. Several features resemble baphetids and temnospondyls including dermal ornamentation, absence of coronoid teeth, and presence of coronoid shagreen. Dentary dentition is most similar to Baphetes. An adsymphysial toothplate may not preclude temnospondyl affinity. An apparent large exomeckelian fenestra, with the dorsal foraminal margins formed by an unossified element, echoes the morphology of the stem tetrapod Sigournea and is unusually primitive given the other features of the jaw. The jaw may thus provide an example of an intermediate stage in Meckelian element evolution. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
30. Phylogenetic Relationships of the Triassic Archaeosemionotus Deecke (Halecomorphi, Ionoscopiformes) from the ‘Perledo Fauna’.
- Author
-
López-Arbarello, Adriana, Stockar, Rudolf, and Bürgin, Toni
- Subjects
- *
PHYLOGENY , *MARINE ecology , *TRIASSIC Period , *TAXONOMY - Abstract
The lagerstätten in the Monte San Giorgio have provided excellent fossils representing one of the most important windows to the marine life during the Triassic. Among these fossils, fishes are abundant and extraordinarily well preserved. Most of these fishes represent extinct lineages and were difficult to understand and classify during the early years after discovery. These difficulties usually led to a mixture of species under the same taxonomic name. This is the case of fishes referred to the genus Archaeosemionotus. The name bearing type of A. connectens, the type species of this genus, represents a basal halecomorph, but most other fishes referred to this genus represent basal ginglymodians. Therefore, we conducted this study to clarify the taxonomic status and phylogenetic relationships of A. connectens, which is a member of the family Furidae (Halecomorphi, Ionoscopiformes) representing the second cladistically supported evidence of ionoscopiforms in the Triassic and it is thus one of the two oldest reliable records of this group. Ionoscopiforms have a long stratigraphic range, though their fossil record is rather patchy. In our analysis, the sister taxon of Archaeosemionotus is Robustichthys from the Anisian of China, and they together form a clade with Furo, which is known from several localities ranging from the Early to the Late Jurassic. Other ionoscopiforms are so far known from the Kimmeridgian to the Albian and it is thus evident that recent efforts have concentrated on the later history of the group (Late Jurassic to Cretaceous). The phylogenetic relationships obtained for the Ionoscopiformes do not show a clear palaeobiogeographic pattern, but give important new insights into the origin, divergence date and early history of this clade. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
31. Biogeography of Speciation of Two Sister Species of Neotropical Amazona (Aves, Psittaciformes) Based on Mitochondrial Sequence Data.
- Author
-
Rocha, Amanda V., Rivera, Luis O., Martinez, Jaime, Prestes, Nêmora P., and Caparroz, Renato
- Subjects
- *
BIOGEOGRAPHY , *POPULATION genetics , *BIOLOGICAL evolution , *PARROTS , *GENETIC speciation , *MITOCHONDRIA , *CYTOCHROMES , *PLEISTOCENE Epoch - Abstract
Coalescent theory provides powerful models for population genetic inference and is now increasingly important in estimates of divergence times and speciation research. We use molecular data and methods based on coalescent theory to investigate whether genetic evidence supports the hypothesis of A. pretrei and A. tucumana as separate species and whether genetic data allow us to assess which allopatric model seems to better explain the diversification process in these taxa. We sampled 13 A. tucumana from two provinces in northern Argentina and 28 A. pretrei from nine localities of Rio Grande do Sul, Brazil. A 491 bp segment of the mitochondrial gene cytochrome c oxidase I was evaluated using the haplotype network and phylogenetic methods. The divergence time and other demographic quantities were estimated using the isolation and migration model based on coalescent theory. The network and phylogenetic reconstructions showed similar results, supporting reciprocal monophyly for these two taxa. The divergence time of lineage separation was estimated to be approximately 1.3 million years ago, which corresponds to the lower Pleistocene. Our results enforce the current taxonomic status for these two Amazon species. They also support that A. pretrei and A. tucumana diverged with little or no gene flow approximately 1.3 million years ago, most likely after the establishment of a small population in the Southern Yungas forest by dispersion of a few founders from the A. pretrei ancestral population. This process may have been favored by habitat corridors formed in hot and humid periods of the Quaternary. Considering that these two species are considered threatened, the results were evaluated for their implications for the conservation of these two species. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
32. The Invisible Prevalence of Citizen Science in Global Research: Migratory Birds and Climate Change.
- Author
-
Cooper, Caren B., Shirk, Jennifer, and Zuckerberg, Benjamin
- Subjects
- *
CITIZENS , *BIRD migration , *CLIMATE change , *DATA analysis , *ORNITHOLOGISTS , *GLOBAL environmental change , *ANIMAL classification - Abstract
Citizen science is a research practice that relies on public contributions of data. The strong recognition of its educational value combined with the need for novel methods to handle subsequent large and complex data sets raises the question: Is citizen science effective at science? A quantitative assessment of the contributions of citizen science for its core purpose – scientific research – is lacking. We examined the contribution of citizen science to a review paper by ornithologists in which they formulated ten central claims about the impact of climate change on avian migration. Citizen science was never explicitly mentioned in the review article. For each of the claims, these ornithologists scored their opinions about the amount of research effort invested in each claim and how strongly the claim was supported by evidence. This allowed us to also determine whether their trust in claims was, unwittingly or not, related to the degree to which the claims relied primarily on data generated by citizen scientists. We found that papers based on citizen science constituted between 24 and 77% of the references backing each claim, with no evidence of a mistrust of claims that relied heavily on citizen-science data. We reveal that many of these papers may not easily be recognized as drawing upon volunteer contributions, as the search terms “citizen science” and “volunteer” would have overlooked the majority of the studies that back the ten claims about birds and climate change. Our results suggest that the significance of citizen science to global research, an endeavor that is reliant on long-term information at large spatial scales, might be far greater than is readily perceived. To better understand and track the contributions of citizen science in the future, we urge researchers to use the keyword “citizen science” in papers that draw on efforts of non-professionals. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
33. An Otx/Nodal Regulatory Signature for Posterior Neural Development in Ascidians.
- Author
-
Roure, Agnès, Lemaire, Patrick, and Darras, Sébastien
- Subjects
- *
SEA squirts , *CHORDATA , *BLASTOMERES , *EMBRYOLOGY , *TRANSCRIPTION factors - Abstract
In chordates, neural induction is the first step of a complex developmental process through which ectodermal cells acquire a neural identity. In ascidians, FGF-mediated neural induction occurs at the 32-cell stage in two blastomere pairs, precursors respectively of anterior and posterior neural tissue. We combined molecular embryology and cis-regulatory analysis to unveil in the ascidian Ciona intestinalis the remarkably simple proximal genetic network that controls posterior neural fate acquisition downstream of FGF. We report that the combined action of two direct FGF targets, the TGFβ factor Nodal, acting via Smad- and Fox-binding sites, and the transcription factor Otx suffices to trigger ascidian posterior neural tissue formation. Moreover, we found that this strategy is conserved in the distantly related ascidian Phallusia mammillata, in spite of extreme sequence divergence in the cis-regulatory sequences involved. Our results thus highlight that the modes of gene regulatory network evolution differ with the evolutionary scale considered. Within ascidians, developmental regulatory networks are remarkably robust to genome sequence divergence. Between ascidians and vertebrates, major fate determinants, such as Otx and Nodal, can be co-opted into different networks. Comparative developmental studies in ascidians with divergent genomes will thus uncover shared ascidian strategies, and contribute to a better understanding of the diversity of developmental strategies within chordates. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
34. A Mitogenomic Perspective on the Phylogenetic Position of the Hapalogenys Genus (Acanthopterygii: Perciformes) and the Evolutionary Origin of Perciformes.
- Author
-
Wei, Tao, Sun, Yuena, Zhang, Bo, Wang, Rixin, and Xu, Tianjun
- Subjects
- *
PHYLOGENY , *MITOCHONDRIA , *NUCLEOTIDE sequence , *DATA analysis , *PERCIFORMES , *MAXIMUM likelihood statistics - Abstract
The Hapalogenys genus was the most controversial and problematic in phylogenetic position of Percoidei. In this study, we rechecked the taxonomic status of Hapalogenys in Percoidei using complete mitochondrial genome data. We purposefully added a new complete mitochondrial sequence from chosen species of Hapalogenys and conducted phylogenetic analyses using a large complete mitochondrial data set. The resultant tree topologies were congruent from partitioned Bayesian and Maximum-likelihood methods. The results indicated that Hapalogenys was distantly related to Haemulidae and could be removed from Haemulidae. The results supported the Hapalogeny was upgraded to a family rank titled Hapalogenyidae, and it should be recognized in a separate family of Hapalogenyidae. A relaxed molecular-clock Bayesian analysis indicated that the divergence times of Perciformes groups had a much older than the available old fossil records. The origin of the common ancestral lineage of Perciformes fish was estimated in the late Jurassic about 149 Myr ago. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
35. The Role of Integrative Taxonomy in the Conservation Management of Cryptic Species: The Taxonomic Status of Endangered Earless Dragons (Agamidae: Tympanocryptis) in the Grasslands of Queensland, Australia.
- Author
-
Melville, Jane, Smith, Katie, Hobson, Rod, Hunjan, Sumitha, and Shoo, Luke
- Subjects
- *
MOLECULAR phylogeny , *CONSERVATION biology , *PROTECTIVE coloration (Biology) , *TAXONOMY , *ENDANGERED species , *AGAMIDAE - Abstract
Molecular phylogenetics is increasingly highlighting the prevalence of cryptic species, where morphologically similar organisms have long independent evolutionary histories. When such cryptic species are known to be declining in numbers and are at risk of extinction due to a range of threatening processes, the disjunction between molecular systematics research and conservation policy becomes a significant problem. We investigate the taxonomic status of Tympanocryptis populations in Queensland, which have previously been assigned to T. tetraporophora, using three species delimitation approaches. The taxonomic uncertainties in this species-group are of particular importance in the Darling Downs Earless Dragon (T. cf. tetraporophora), which is ranked as an endangered ‘species’ of high priority for conservation by the Queensland Department of Environment and Heritage Protection. We undertook a morphological study, integrated with a comprehensive genetic study and species delimitation analyses, to investigate the species status of populations in the region. Phylogenetic analyses of two gene regions (mtDNA: ND2; nuclear: RAG1) revealed high levels of genetic divergence between populations, indicating isolation over long evolutionary time frames, and strongly supporting two independent evolutionary lineages in southeastern Queensland, from the Darling Downs, and a third in the Gulf Region of northern Queensland. Of the three species delimitation protocols used, we found integrative taxonomy the most applicable to this cryptic species complex. Our study demonstrates the utility of integrative taxonomy as a species delimitation approach in cryptic complexes of species with conservation significance, where limited numbers of specimens are available. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
36. Cryptic Diversity and Venom Glands in Western Atlantic Clingfishes of the Genus Acyrtus (Teleostei: Gobiesocidae).
- Author
-
Conway, Kevin W., Baldwin, Carole, and White, Macaulay D.
- Subjects
- *
VENOM , *CLINGFISHES , *OSTEICHTHYES , *CYTOCHROME oxidase , *BIOLOGICAL specimens , *BIODIVERSITY - Abstract
Examination of genetic data (mitochondrial cytochrome c oxidase I) for western Atlantic clingfishes revealed two distinct lineages within a group of individuals originally identified as Acyrtus artius. Subsequent investigation of preserved voucher specimens was conducted to reconcile the genetic data and the existing classification, which is based on morphology. In addition to discovering that one of the genetic lineages is an undescribed species, which we describe as Acyrtus lanthanum, new species, we found that the nominal species Acyrtus artius has a putative venom gland associated with the subopercle that has been overlooked since the species was described nearly 60 years ago. The new species lacks the subopercular gland as does Acyrtus rubiginosus, but one is present in the related Arcos nudus. Venom glands have not been reported previously for the Gobiesocidae, and the venom gland described herein for Acyrtus and Arcos represents the first example in teleost fishes of a venom gland associated with the subopercle. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
37. Revision of the sixgill sawsharks, genus Pliotrema (Chondrichthyes, Pristiophoriformes), with descriptions of two new species and a redescription of P. warreni Regan
- Author
-
Ruth H. Leeney, Ofer Gon, Simon Weigmann, Narriman Jiddawi, Andrew J. Temple, Per Berggren, and Ellen Barrowclift
- Subjects
0106 biological sciences ,Gills ,Male ,Upper Jaw Tooth ,Teeth ,Range (biology) ,Respiratory System ,Population Dynamics ,01 natural sciences ,Tanzania ,Genus ,Pristiophoridae ,Medicine and Health Sciences ,Pristiophoriformes ,Animal Anatomy ,Chordata ,Musculoskeletal System ,Indian Ocean ,Phylogeny ,Data Management ,Multidisciplinary ,Rostrum ,New Species Reports ,Biodiversity ,Key (lock) ,Medicine ,Female ,Anatomy ,Snout ,Research Article ,Computer and Information Sciences ,Science ,010607 zoology ,Zoology ,Spiracles ,Biology ,010603 evolutionary biology ,Ocular System ,Symphyses ,Madagascar ,Animalia ,Animals ,Ecosystem ,Taxonomy ,Barbel ,Mouth ,Biology and Life Sciences ,biology.organism_classification ,Chondrichthyes ,Jaw ,Aquatic Respiratory Anatomy ,Eyes ,Digestive System ,Head ,Animal Distribution ,Tooth ,Elasmobranchii - Abstract
Recent sampling efforts in Madagascar and Zanzibar, as well as examinations of six-gilled sawsharks in several museum collections provided evidence for a complex of species within Pliotrema warreni Regan. The present manuscript contains a redescription of P. warreni involving the syntypes and additional material, as well as formal descriptions of two new species of Pliotrema Regan. All specimens of both new species were found in the western Indian Ocean. Individuals of the first new species, hereafter referred to as P. kajae sp. nov., were identified originating from Madagascar and the Mascarene Ridge. Specimens of the second new species, hereafter referred to as P. annae sp. nov., were only found off Zanzibar. Pliotrema kajae sp. nov. appears to inhabit upper insular slopes and submarine ridges at depths of 214–320 m, P. annae sp. nov. so far is only known from shallow waters (20–35 m). Both new species differ from P. warreni in a number of characteristics including the known distribution range and fresh coloration. Taxonomical differences include barbels that are situated approximately half way from rostral tip to mouth, with prebarbel length equidistant from barbel origin to symphysis of the upper jaw in P. kajae sp. nov. and P. annae sp. nov. (vs. about two thirds way from rostral tip to mouth, with prebarbel length about twice the distance from barbel origin to symphysis of upper jaw in P. warreni) and rostra that are clearly and slightly constricted between barbel origin and nostrils, respectively (vs. rostrum not constricted). Pliotrema kajae sp. nov. differs from P. annae sp. nov. in a longer snout, more numerous large lateral rostral teeth and upper jaw tooth rows, jaw teeth with (vs. without) sharp basal folds, and coloration, particularly pale to light brown (vs. medium to dark brown) dorsal coloration with (vs. without) two indistinct yellowish stripes. A revised diagnosis of Pliotrema and a key to the species are provided.
- Published
- 2020
38. Bringing Dicynodonts Back to Life: Paleobiology and Anatomy of a New Emydopoid Genus from the Upper Permian of Mozambique.
- Author
-
Castanhinha, Rui, Araújo, Ricardo, Júnior, Luís C., Angielczyk, Kenneth D., Martins, Gabriel G., Martins, Rui M. S., Chaouiya, Claudine, Beckmann, Felix, and Wilde, Fabian
- Subjects
- *
PALEOBIOLOGY , *CHORDATA , *SYNCHROTRON radiation , *ECOSYSTEMS , *COMPUTED tomography , *THERAPSIDA - Abstract
Dicynodontia represent the most diverse tetrapod group during the Late Permian. They survived the Permo-Triassic extinction and are central to understanding Permo-Triassic terrestrial ecosystems. Although extensively studied, several aspects of dicynodont paleobiology such as, neuroanatomy, inner ear morphology and internal cranial anatomy remain obscure. Here we describe a new dicynodont (Therapsida, Anomodontia) from northern Mozambique: Niassodon mfumukasi gen. et sp. nov. The holotype ML1620 was collected from the Late Permian K5 formation, Metangula Graben, Niassa Province northern Mozambique, an almost completely unexplored basin and country for vertebrate paleontology. Synchrotron radiation based micro-computed tomography (SRµCT), combined with a phylogenetic analysis, demonstrates a set of characters shared with Emydopoidea. All individual bones were digitally segmented allowing a 3D visualization of each element. In addition, we reconstructed the osseous labyrinth, endocast, cranial nerves and vasculature. The brain is narrow and the cerebellum is broader than the forebrain, resembling the conservative, “reptilian-grade” morphology of other non-mammalian therapsids, but the enlarged paraflocculi occupy the same relative volume as in birds. The orientation of the horizontal semicircular canals indicates a slightly more dorsally tilted head posture than previously assumed in other dicynodonts. In addition, synchrotron data shows a secondary center of ossification in the femur. Thus ML1620 represents, to our knowledge, the oldest fossil evidence of a secondary center of ossification, pushing back the evolutionary origins of this feature. The fact that the specimen represents a new species indicates that the Late Permian tetrapod fauna of east Africa is still incompletely known. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
39. Bacterial Endosymbiosis in a Chordate Host: Long-Term Co-Evolution and Conservation of Secondary Metabolism.
- Author
-
Kwan, Jason C. and Schmidt, Eric W.
- Subjects
- *
ENDOSYMBIOSIS , *BACTERIAL physiology , *CHORDATA , *CONSERVATION biology , *BIOLOGICAL evolution , *SECONDARY metabolism , *PARASITISM - Abstract
Intracellular symbiosis is known to be widespread in insects, but there are few described examples in other types of host. These symbionts carry out useful activities such as synthesizing nutrients and conferring resistance against adverse events such as parasitism. Such symbionts persist through host speciation events, being passed down through vertical transmission. Due to various evolutionary forces, symbionts go through a process of genome reduction, eventually resulting in tiny genomes where only those genes essential to immediate survival and those beneficial to the host remain. In the marine environment, invertebrates such as tunicates are known to harbor complex microbiomes implicated in the production of natural products that are toxic and probably serve a defensive function. Here, we show that the intracellular symbiont Candidatus Endolissoclinum faulkneri is a long-standing symbiont of the tunicate Lissoclinum patella, that has persisted through cryptic speciation of the host. In contrast to the known examples of insect symbionts, which tend to be either relatively recent or ancient relationships, the genome of Ca. E. faulkneri has a very low coding density but very few recognizable pseudogenes. The almost complete degradation of intergenic regions and stable gene inventory of extant strains of Ca. E. faulkneri show that further degradation and deletion is happening very slowly. This is a novel stage of genome reduction and provides insight into how tiny genomes are formed. The ptz pathway, which produces the defensive patellazoles, is shown to date to before the divergence of Ca. E. faulkneri strains, reinforcing its importance in this symbiotic relationship. Lastly, as in insects we show that stable symbionts can be lost, as we describe an L. patella animal where Ca. E. faulkneri is displaced by a likely intracellular pathogen. Our results suggest that intracellular symbionts may be an important source of ecologically significant natural products in animals. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
40. Parallel Evolution of Chordate Cis-Regulatory Code for Development.
- Author
-
Doglio, Laura, Goode, Debbie K., Pelleri, Maria C., Pauls, Stefan, Frabetti, Flavia, Shimeld, Sebastian M., Vavouri, Tanya, and Elgar, Greg
- Subjects
- *
TUNICATA , *VERTEBRATES , *CHORDATA , *CIONA intestinalis , *GENE expression - Abstract
Urochordates are the closest relatives of vertebrates and at the larval stage, possess a characteristic bilateral chordate body plan. In vertebrates, the genes that orchestrate embryonic patterning are in part regulated by highly conserved non-coding elements (CNEs), yet these elements have not been identified in urochordate genomes. Consequently the evolution of the cis-regulatory code for urochordate development remains largely uncharacterised. Here, we use genome-wide comparisons between C. intestinalis and C. savignyi to identify putative urochordate cis-regulatory sequences. Ciona conserved non-coding elements (ciCNEs) are associated with largely the same key regulatory genes as vertebrate CNEs. Furthermore, some of the tested ciCNEs are able to activate reporter gene expression in both zebrafish and Ciona embryos, in a pattern that at least partially overlaps that of the gene they associate with, despite the absence of sequence identity. We also show that the ability of a ciCNE to up-regulate gene expression in vertebrate embryos can in some cases be localised to short sub-sequences, suggesting that functional cross-talk may be defined by small regions of ancestral regulatory logic, although functional sub-sequences may also be dispersed across the whole element. We conclude that the structure and organisation of cis-regulatory modules is very different between vertebrates and urochordates, reflecting their separate evolutionary histories. However, functional cross-talk still exists because the same repertoire of transcription factors has likely guided their parallel evolution, exploiting similar sets of binding sites but in different combinations. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
41. Multiple Signaling Pathways Coordinate to Induce a Threshold Response in a Chordate Embryo.
- Author
-
Ohta, Naoyuki and Satou, Yutaka
- Subjects
- *
CIONA intestinalis , *CHORDATA , *EMBRYOLOGY , *CELLULAR signal transduction , *PHOSPHORYLATION - Abstract
In animal development, secreted signaling molecules evoke all-or-none threshold responses of target gene transcription to specify cell fates. In the chordate Ciona intestinalis, the neural markers Otx and Nodal are induced at early embryonic stages by Fgf9/16/20 signaling. Here we show that three additional signaling molecules act negatively to generate a sharp expression boundary for neural genes. EphrinA signaling antagonizes FGF signaling by inhibiting ERK phosphorylation more strongly in epidermal cells than in neural cells, which accentuates differences in the strength of ERK activation. However, even weakly activated ERK activates Otx and Nodal transcription occasionally, probably because of the inherently stochastic nature of signal transduction processes and binding of transcription factors to target sequences. This occasional and undesirable activation of neural genes by weak residual ERK activity is directly repressed by Smad transcription factors activated by Admp and Gdf1/3-like signaling, further sharpening the differential responses of cells to FGF signaling. Thus, these signaling pathways coordinate to evoke a threshold response that delineates a sharp expression boundary. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
42. An Evolutionary Cascade Model for Sauropod Dinosaur Gigantism - Overview, Update and Tests.
- Author
-
Sander, P. Martin
- Subjects
- *
SAURISCHIA , *DINOSAURS , *HERBIVORES , *PALEONTOLOGISTS , *ANTHROPOMETRY , *CHORDATA , *RESPIRATORY organs - Abstract
Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades (“Reproduction”, “Feeding”, “Head and neck”, “Avian-style lung”, and “Metabolism”). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait “Very high body mass”. Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
43. Functional Brachyury Binding Sites Establish a Temporal Read-out of Gene Expression in the Ciona Notochord.
- Author
-
Katikala, Lavanya, Aihara, Hitoshi, Passamaneck, Yale J., Gazdoiu, Stefan, José-Edwards, Diana S., Kugler, Jamie E., Oda-Ishii, Izumi, Imai, Janice H., Nibu, Yutaka, and Di Gregorio, Anna
- Subjects
- *
CRABS , *CHORDATA , *EMBRYOS , *TRANSCRIPTION factors , *GENES , *GENE expression , *NOTOCHORD - Abstract
: During notochord formation in chordate embryos, the transcription factor Brachyury employs different regulatory strategies to ensure the sequential activation of downstream genes and thereby the deployment of a specific developmental program at the right time and place. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
44. Evolutionary History of Chordate PAX Genes: Dynamics of Change in a Complex Gene Family.
- Author
-
Paixão-Côrtes, Vanessa Rodrigues, Salzano, Francisco Mauro, and Bortolini, Maria Cátira
- Subjects
- *
BIOLOGICAL evolution , *CHORDATA , *TRANSCRIPTION factors , *EMBRYOLOGY , *CHROMOSOME duplication , *COMPARATIVE studies - Abstract
Paired box (PAX) genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
45. The Candidate Histocompatibility Locus of a Basal Chordate Encodes Two Highly Polymorphic Proteins.
- Author
-
Nydam, Marie L., Netuschil, Nikolai, Sanders, Erin, Langenbacher, Adam, Lewis, Daniel D., Taketa, Daryl A., Marimuthu, Arumugapradeep, Gracey, Andrew Y., and De Tomaso, Anthony W.
- Subjects
- *
CHORDATA , *HISTOCOMPATIBILITY , *BOTRYLLUS schlosseri , *GENETIC transcription , *AMINO acids , *GENETIC polymorphisms , *MESSENGER RNA , *BIOLOGICAL evolution , *GENETICS - Abstract
The basal chordate Botryllus schlosseri undergoes a natural transplantation reaction governed by a single, highly polymorphic locus called the fuhc. Our initial characterization of this locus suggested it encoded a single gene alternatively spliced into two transcripts: a 555 amino acid–secreted form containing the first half of the gene, and a full-length, 1008 amino acid transmembrane form, with polymorphisms throughout the ectodomain determining outcome. We have now found that the locus encodes two highly polymorphic genes which are separated by a 227 bp intergenic region: first, the secreted form as previously described, and a second gene encoding a 531 amino acid membrane-bound gene containing three extracellular immunoglobulin domains. While northern blotting revealed only these two mRNAs, both PCR and mRNA-seq detect a single capped and polyadenylated transcript that encodes processed forms of both genes linked by the intergenic region, as well as other transcripts in which exons of the two genes are spliced together. These results might suggest that the two genes are expressed as an operon, during which both genes are co-transcribed and then trans-spliced into two separate messages. This type of transcriptional regulation has been described in tunicates previously; however, the membrane-bound gene does not encode a typical Splice Leader (SL) sequence at the 5′ terminus that usually accompanies trans-splicing. Thus, the presence of stable transcripts encoding both genes may suggest a novel mechanism of regulation, or conversely may be rare but stable transcripts in which the two mRNAs are linked due to a small amount of read-through by RNA polymerase. Both genes are highly polymorphic and co-expressed on tissues involved in histocompatibility. In addition, polymorphisms on both genes correlate with outcome, although we have found a case in which it appears that the secreted form may be major allorecognition determinant. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
46. On the Validity and Phylogenetic Position of Eubrachiosaurus browni, a Kannemeyeriiform Dicynodont (Anomodontia) from Triassic North America
- Author
-
Kammerer, Christian F., Fröbisch, Jörg, and Angielczyk, Kenneth D.
- Subjects
- *
PHYLOGENY , *CHORDATA , *TRIASSIC Period , *TAXONOMY , *SCAPULA - Abstract
The large dicynodont Eubrachiosaurus browni from the Upper Triassic Popo Agie Formation of Wyoming is redescribed. Eubrachiosaurus is a valid taxon that differs from Placerias hesternus, with which it was previously synonymized, by greater anteroposterior expansion of the scapula dorsally and a very large, nearly rectangular humeral ectepicondyle with a broad supinator process. Inclusion of Eubrachiosaurus in a revised phylogenetic analysis of anomodont therapsids indicates that it is a stahleckeriid closely related to the South American genera Ischigualastia and Jachaleria. The recognition of Eubrachiosaurus as a distinct lineage of North American dicynodonts, combined with other recent discoveries in the eastern USA and Europe, alters our perception of Late Triassic dicynodont diversity in the northern hemisphere. Rather than being isolated relicts in previously therapsid-dominated regions, Late Triassic stahleckeriid dicynodonts were continuing to disperse and diversify, even in areas like western North America that were otherwise uninhabited by coeval therapsids (i.e., cynodonts). [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
47. A Gigantic Sarcopterygian (Tetrapodomorph Lobe-Finned Fish) from the Upper Devonian of Gondwana (Eden, New South Wales, Australia).
- Author
-
Young, Ben, Dunstone, Robert L., Senden, Timothy J., and Young, Gavin C.
- Subjects
- *
CHORDATA , *BIOLOGICAL evolution , *DEVONIAN Period , *BIOGEOGRAPHY , *PALEOECOLOGY , *COMPARATIVE anatomy - Abstract
Edenopteron keithcrooki gen. et sp. nov. is described from the Famennian Worange Point Formation; the holotype is amongst the largest tristichopterids and sarcopterygians documented by semi-articulated remains from the Devonian Period. The new taxon has dentary fangs and premaxillary tusks, features assumed to be derived for large Northern Hemisphere tristichopterids (Eusthenodon, Hyneria, Langlieria). It resembles Eusthenodon in ornament, but is distinguished by longer proportions of the parietal compared to the post-parietal shield, and numerous differences in shape and proportions of other bones. Several characters (accessory vomers in the palate, submandibulars overlapping ventral jaw margin, scales ornamented with widely-spaced deep grooves) are recorded only in tristichopterids from East Gondwana (Australia-Antarctica). On this evidence Edenopteron gen. nov. is placed in an endemic Gondwanan subfamily Mandageriinae within the Tristichopteridae; it differs from the nominal genotype Mandageria in its larger size, less pointed skull, shape of the orbits and other skull characters. The hypothesis that tristichopterids evolved in Laurussia and later dispersed into Gondwana, and a derived subgroup of large Late Devonian genera dispersed from Gondwana, is inconsistent with the evidence of the new taxon. Using oldest fossil and most primitive clade criteria the most recent phylogeny resolves South China and Gondwana as areas of origin for all tetrapodomorphs. The immediate outgroup to tristichopterids remains unresolved – either Spodichthys from Greenland as recently proposed, or Marsdenichthys from Gondwana, earlier suggested to be the sister group to all tristichopterids. Both taxa combine two characters that do not co-occur in other tetrapodomorphs (extratemporal bone in the skull; non-cosmoid round scales with an internal boss). Recently both ‘primitive’ and ‘derived’ tristichopterids have been discovered in the late Middle Devonian of both hemispheres, implying extensive ghost lineages within the group. Resolving their phylogeny and biogeography will depend on a comprehensive new phylogenetic analysis. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
48. MiRmat: Mature microRNA Sequence Prediction.
- Author
-
Chenfeng He, Ying-Xin Li, Guangxin Zhang, Zuguang Gu, Rong Yang, Jie Li, Zhi John Lu, Zhi-Hua Zhou, Chenyu Zhang, and Jin Wang
- Subjects
- *
NUCLEIC acids , *MESSENGER RNA , *RIBOSE , *CHORDATA , *VERTEBRATES - Abstract
Background: MicroRNAs are known to be generated from primary transcripts mainly through the sequential cleavages by two enzymes, Drosha and Dicer. The sequence of a mature microRNA, especially the 'seeding sequence', largely determines its binding ability and specificity to target mRNAs. Therefore, methods that predict mature microRNA sequences with high accuracy will benefit the identification and characterization of novel microRNAs and their targets, and contribute to inferring the post-transcriptional regulation network at a genome scale. Methodology/Principal Findings: We have developed a method, MiRmat, to predict the mature microRNA sequence. MiRmat is essentially composed of two parts: the prediction of Drosha processing site and the identification of Dicer processing site. Based on the analysis of microRNAs from 12 species, we found that the patterns of free energy profiles are conserved among vertebrate microRNA hairpins. Therefore, we introduced in our method the free energy distribution pattern of the downstream part of pri-microRNA secondary structure and Random Forest algorithm to predict the mature microRNA sequence. Based on the evaluation on an independent test dataset from 10 vertebrates, MiRmat was shown to identify 77.8% of the Drosha processing sites and 92.8% of the Dicer sites within a deviation of 2 nt. In a more stringent evaluation by excluding the microRNAs sharing the same family between the training set and test set, MiRmat kept a rather well performance of 71.9% and 87.2% of the identification rate on the Drosha and Dicer site respectively, which represents the ability to deal with the novel microRNA family. MiRmat outperforms other state-of-the-art methods and has a high degree of efficacy for the prediction of mature microRNA sequences of vertebrates. Conclusion: MiRmat was developed for identifying microRNA mature sequence(s) by introducing the free energy distribution of RNA stem-loop structure and the Random Forest algorithm. We prove that MiRmat has better performance than the existing tools and is applicable among vertebrates. MiRmat is freely available at http://mcube.nju.edu.cn/jwang/ lab/soft/MiRmat/ [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
49. Trypanosome Motion Represents an Adaptation to the Crowded Environment of the Vertebrate Bloodstream.
- Author
-
Heddergott, Niko, Krüger, Timothy, Babu, Sujin B., Ai Wei, Stellamanns, Erik, Uppaluri, Sravanti, Pfohl, Thomas, Stark, Holger, and Engstler, Markus
- Subjects
- *
VERTEBRATES , *CHORDATA , *BLOOD , *HEMATOLOGY , *HABITATS - Abstract
Blood is a remarkable habitat: it is highly viscous, contains a dense packaging of cells and perpetually flows at velocities varying over three orders of magnitude. Only few pathogens endure the harsh physical conditions within the vertebrate bloodstream and prosper despite being constantly attacked by host antibodies. African trypanosomes are strictly extracellular blood parasites, which evade the immune response through a system of antigenic variation and incessant motility. How the flagellates actually swim in blood remains to be elucidated. Here, we show that the mode and dynamics of trypanosome locomotion are a trait of life within a crowded environment. Using high-speed fluorescence microscopy and ordered micro-pillar arrays we show that the parasites mode of motility is adapted to the density of cells in blood. Trypanosomes are pulled forward by the planar beat of the single flagellum. Hydrodynamic flow across the asymmetrically shaped cell body translates into its rotational movement. Importantly, the presence of particles with the shape, size and spacing of blood cells is required and sufficient for trypanosomes to reach maximum forward velocity. If the density of obstacles, however, is further increased to resemble collagen networks or tissue spaces, the parasites reverse their flagellar beat and consequently swim backwards, in this way avoiding getting trapped. In the absence of obstacles, this flagellar beat reversal occurs randomly resulting in irregular waveforms and apparent cell tumbling. Thus, the swimming behavior of trypanosomes is a surprising example of micro-adaptation to life at low Reynolds numbers. For a precise physical interpretation, we compare our high-resolution microscopic data to results from a simulation technique that combines the method of multi-particle collision dynamics with a triangulated surface model. The simulation produces a rotating cell body and a helical swimming path, providing a functioning simulation method for a microorganism with a complex swimming strategy. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
50. Antagonizing Retinoic Acid and FGF/MAPK Pathways Control Posterior Body Patterning in the Invertebrate Chordate Ciona intestinalis.
- Author
-
Pasini, Andrea, Manenti, Raoul, Rothbächer, Ute, Lemaire, Patrick, and Jr-Kai Sky Yu
- Subjects
- *
TRETINOIN , *CHORDATA , *CIONA intestinalis , *MITOGEN-activated protein kinases , *VERTEBRATES , *MATERIAL plasticity - Abstract
Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/ MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.