Alizon, Samuel, von Wyl, Viktor, Stadler, Tanja, Kouyos, Roger D, Yerly, Sabine, Hirschel, Bernard, Böni, Jürg, Shah, Cyril, Klimkait, Thomas, Furrer, Hansjakob, Rauch, Andri, Vernazza, Pietro L, Bernasconi, Enos, Battegay, Manuel, Bürgisser, Philippe, Telenti, Amalio, Günthard, Huldrych F, Bonhoeffer, Sebastian, Swiss HIV Cohort Study, Evolution Théorique et Expérimentale (MIVEGEC-ETE), Perturbations, Evolution, Virulence (PEV), Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Institut fur Integrative Biologie, University of Bern, Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), University of Zurich, Alizon, S, and Swiss HIV Cohort Study
HIV virulence, i.e. the time of progression to AIDS, varies greatly among patients. As for other rapidly evolving pathogens of humans, it is difficult to know if this variance is controlled by the genotype of the host or that of the virus because the transmission chain is usually unknown. We apply the phylogenetic comparative approach (PCA) to estimate the heritability of a trait from one infection to the next, which indicates the control of the virus genotype over this trait. The idea is to use viral RNA sequences obtained from patients infected by HIV-1 subtype B to build a phylogeny, which approximately reflects the transmission chain. Heritability is measured statistically as the propensity for patients close in the phylogeny to exhibit similar infection trait values. The approach reveals that up to half of the variance in set-point viral load, a trait associated with virulence, can be heritable. Our estimate is significant and robust to noise in the phylogeny. We also check for the consistency of our approach by showing that a trait related to drug resistance is almost entirely heritable. Finally, we show the importance of taking into account the transmission chain when estimating correlations between infection traits. The fact that HIV virulence is, at least partially, heritable from one infection to the next has clinical and epidemiological implications. The difference between earlier studies and ours comes from the quality of our dataset and from the power of the PCA, which can be applied to large datasets and accounts for within-host evolution. The PCA opens new perspectives for approaches linking clinical data and evolutionary biology because it can be extended to study other traits or other infectious diseases., Author Summary Some untreated patients infected by HIV die within a couple of years, while others survive more than 25 years. To date, it is still unclear whether this variance in the virulence of the infection is due to the host or to the virus genotype. One of the main difficulties in answering this question is that, as for most human diseases, we tend not to know who infected whom. Here, we solve this problem by adopting a phylogenetic approach, which estimates the heritability of species traits on a phylogeny. In our case, species correspond to infected patients and the trait is an infection trait. The phylogeny is obtained from the HIV RNA sequences isolated in each patient. We find that more than half of the variance observed in the set-point viral load—a trait that predicts virulence—is heritable from one infection to the next. This implies that set-point viral load is strongly controlled by the virus genotype. This application of the phylogenetic comparative approach to infectious diseases yields major results for the deciphering of HIV pathogenesis. Future applications to other traits and/or other pathogens will help us to better understand rapidly evolving diseases of humans.