1. African swine fever virus I267L acts as an important virulence factor by inhibiting RNA polymerase III-RIG-I-mediated innate immunity.
- Author
-
Ran, Yong, Li, Dan, Xiong, Mei-Guang, Liu, Hua-Nan, Feng, Tao, Shi, Zheng-Wang, Li, Yu-Hui, Wu, Huang-Ning, Wang, Su-Yun, Zheng, Hai-Xue, and Wang, Yan-Yi
- Subjects
- *
AFRICAN swine fever virus , *AFRICAN swine fever , *NATURAL immunity , *RNA polymerases , *PATTERN perception receptors , *UBIQUITIN ligases , *DNA viruses - Abstract
ASFV is a large DNA virus that is highly pathogenic in domestic pigs. How this virus is sensed by the innate immune system as well as why it is so virulent remains enigmatic. In this study, we show that the ASFV genome contains AT-rich regions that are recognized by the DNA-directed RNA polymerase III (Pol-III), leading to viral RNA sensor RIG-I-mediated innate immune responses. We further show that ASFV protein I267L inhibits RNA Pol-III-RIG-I-mediated innate antiviral responses. I267L interacts with the E3 ubiquitin ligase Riplet, disrupts Riplet-RIG-I interaction and impairs Riplet-mediated K63-polyubiquitination and activation of RIG-I. I267L-deficient ASFV induces higher levels of interferon-β, and displays compromised replication both in primary macrophages and pigs compared with wild-type ASFV. Furthermore, I267L-deficiency attenuates the virulence and pathogenesis of ASFV in pigs. These findings suggest that ASFV I267L is an important virulence factor by impairing innate immune responses mediated by the RNA Pol-III-RIG-I axis. Author summary: African swine fever virus (ASFV) is a large DNA virus that is highly contagious and pathogenic in domestic pigs with a lethality rate up to 100%. Infection of ASFV has become a global threat with devastating economic and ecological consequences. Unfortunately, commercially available, safe and efficacious vaccines are still lacking so far. How this virus is sensed by the host innate immune system as well as why this virus is so virulent remains enigmatic. Understanding some basic aspects of ASFV-host interaction is helpful for vaccine development. In this study, we found that the highly AT-enriched ASFV genomic DNA is sensed by DNA-directed RNA polymerase III (Pol-III) that transcribes the AT-rich genomic DNA into RNA, which is then recognized by the pattern recognition receptor RIG-I, leading to innate immune responses. This represents one of few examples whereby a DNA virus is primarily sensed by the Pol-III-RIG-I axis. ASFV early gene-encoded protein I267L antagonizes RIG-I-mediated innate immune responses. I267L interacts with Riplet, an E3 ligase essential for RIG-I activation. This disrupts the interaction of Riplet with RIG-I, and impairs Riplet-mediated K63-linked polyubiquitination and activation of RIG-I. Consistently, I267L-deficient ASFV induces higher levels of IFN-β and displays compromised replication both in primary porcine alveolar macrophages (PAMs) and pigs comparing with wild-type ASFV. Furthermore, I267L-deficiency attenuates the virulence and pathogenesis of ASFV in pigs. These results reveal a critical mechanism responsible for the virulence of ASFV, and suggest that deletion of I267L may serve as a strategy to develop attenuated vaccines for ASFV. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF