1. Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks.
- Author
-
Kreshuk, Anna, Koethe, Ullrich, Pax, Elizabeth, Bock, Davi D., and Hamprecht, Fred A.
- Subjects
- *
SYNAPSES , *ELECTRON microscopy , *IMAGE segmentation , *ANISOTROPIC crystals , *MEDICAL imaging systems , *PIXELS - Abstract
We describe a method for fully automated detection of chemical synapses in serial electron microscopy images with highly anisotropic axial and lateral resolution, such as images taken on transmission electron microscopes. Our pipeline starts from classification of the pixels based on 3D pixel features, which is followed by segmentation with an Ising model MRF and another classification step, based on object-level features. Classifiers are learned on sparse user labels; a fully annotated data subvolume is not required for training. The algorithm was validated on a set of 238 synapses in 20 serial 7197×7351 pixel images (4.5×4.5×45 nm resolution) of mouse visual cortex, manually labeled by three independent human annotators and additionally re-verified by an expert neuroscientist. The error rate of the algorithm (12% false negative, 7% false positive detections) is better than state-of-the-art, even though, unlike the state-of-the-art method, our algorithm does not require a prior segmentation of the image volume into cells. The software is based on the ilastik learning and segmentation toolkit and the vigra image processing library and is freely available on our website, along with the test data and gold standard annotations (http://www.ilastik.org/synapse-detection/sstem). [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF