4 results on '"Kisi O"'
Search Results
2. Drought trends projection under future climate change scenarios for Iran region.
- Author
-
Bayatavrkeshi M, Imteaz MA, Kisi O, Farahani M, Ghabaei M, Al-Janabi AMS, Hashim BM, Al-Ramadan B, and Yaseen ZM
- Subjects
- Iran, Weather, Models, Statistical, Water, Droughts, Climate Change
- Abstract
The study highlights the potential characteristics of droughts under future climate change scenarios. For this purpose, the changes in Standardized Precipitation Evapotranspiration Index (SPEI) under the A1B, A2, and B1 climate change scenarios in Iran were assessed. The daily weather data of 30 synoptic stations from 1992 to 2010 were analyzed. The HadCM3 statistical model in the LARS-WG was used to predict the future weather conditions between 2011 and 2112, for three 34-year periods; 2011-2045, 2046-2079, and 2080-2112. In regard to the findings, the upward trend of the potential evapotranspiration in parallel with the downward trend of the precipitation in the next 102 years in three scenarios to the base timescale was transparent. The frequency of the SPEI in the base month indicated that 17.02% of the studied months faced the drought. Considering the scenarios of climate change for three 34-year periods (i.e., 2011-2045, 2046-2079, and 2080-2112) the average percentages of potential drought occurrences for all the stations in the next three periods will be 8.89, 16.58, and 27.27 respectively under the B1 scenario. While the predicted values under the A1B scenario are 7.63, 12.66, and 35.08%respectively. The relevant findings under the A2 scenario are 6.73, 10.16, 40.8%. As a consequence, water shortage would be more serious in the third period of study under all three scenarios. The percentage of drought occurrence in the future years under the A2, B1, and A1B will be 19.23%, 17.74%, and 18.84%, respectively which confirms the worst condition under the A2 scenario. For all stations, the number of months with moderate drought was substantially more than severe and extreme droughts. Considering the A2 scenario as a high emission scenario, the analysis of SPEI frequency illustrated that the proportion of dry periods in regions with humid and cool climate is more than hot and warm climates; however, the duration of dry periods in warmer climates is longer than colder climates. Moreover, the temporal distribution of precipitation and potential evapotranspiration indicated that in a large number of stations, there is a significant difference between them in the middle months of the year, which justifies the importance of prudent water management in warm months., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2023 Bayatavrkeshi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF
3. Advanced machine learning model for better prediction accuracy of soil temperature at different depths.
- Author
-
Alizamir M, Kisi O, Ahmed AN, Mert C, Fai CM, Kim S, Kim NW, and El-Shafie A
- Subjects
- Atmosphere, Linear Models, Machine Learning, Neural Networks, Computer, Rivers chemistry, Ecosystem, Environmental Monitoring, Soil chemistry, Temperature
- Abstract
Soil temperature has a vital importance in biological, physical and chemical processes of terrestrial ecosystem and its modeling at different depths is very important for land-atmosphere interactions. The study compares four machine learning techniques, extreme learning machine (ELM), artificial neural networks (ANN), classification and regression trees (CART) and group method of data handling (GMDH) in estimating monthly soil temperatures at four different depths. Various combinations of climatic variables are utilized as input to the developed models. The models' outcomes are also compared with multi-linear regression based on Nash-Sutcliffe efficiency, root mean square error, and coefficient of determination statistics. ELM is found to be generally performs better than the other four alternatives in estimating soil temperatures. A decrease in performance of the models is observed by an increase in soil depth. It is found that soil temperatures at three depths (5, 10 and 50 cm) could be mapped utilizing only air temperature data as input while solar radiation and wind speed information are also required for estimating soil temperature at the depth of 100 cm., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
4. An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration.
- Author
-
Ehteram M, Singh VP, Ferdowsi A, Mousavi SF, Farzin S, Karami H, Mohd NS, Afan HA, Lai SH, Kisi O, Malek MA, Ahmed AN, and El-Shafie A
- Subjects
- Fuzzy Logic, Rivers, Support Vector Machine, Temperature, Wind, Agricultural Irrigation, Environmental Monitoring methods
- Abstract
Reference evapotranspiration (ET0) plays a fundamental role in irrigated agriculture. The objective of this study is to simulate monthly ET0 at a meteorological station in India using a new method, an improved support vector machine (SVM) based on the cuckoo algorithm (CA), which is known as SVM-CA. Maximum temperature, minimum temperature, relative humidity, wind speed and sunshine hours were selected as inputs for the models used in the simulation. The results of the simulation using SVM-CA were compared with those from experimental models, genetic programming (GP), model tree (M5T) and the adaptive neuro-fuzzy inference system (ANFIS). The achieved results demonstrate that the proposed SVM-CA model is able to simulate ET0 more accurately than the GP, M5T and ANFIS models. Two major indicators, namely, root mean square error (RMSE) and mean absolute error (MAE), indicated that the SVM-CA outperformed the other methods with respective reductions of 5-15% and 5-17% compared with the GP model, 12-21% and 10-22% compared with the M5T model, and 7-15% and 5-18% compared with the ANFIS model, respectively. Therefore, the proposed SVM-CA model has high potential for accurate simulation of monthly ET0 values compared with the other models., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.