1. Luteolin target HSPB1 regulates endothelial cell ferroptosis to protect against radiation vascular injury.
- Author
-
Wen L, Zhang W, Hu J, Chen T, Wang Y, Lv C, Li M, Wang L, and Xiao F
- Subjects
- Humans, Animals, Molecular Chaperones metabolism, HSP27 Heat-Shock Proteins metabolism, Male, Mice, Radiation Injuries metabolism, Radiation Injuries drug therapy, Radiation Injuries prevention & control, Heat-Shock Proteins metabolism, Vascular System Injuries metabolism, Vascular System Injuries drug therapy, Vascular System Injuries pathology, Superoxide Dismutase metabolism, Antioxidants pharmacology, Luteolin pharmacology, Ferroptosis drug effects, Human Umbilical Vein Endothelial Cells drug effects, Human Umbilical Vein Endothelial Cells metabolism
- Abstract
Vascular endothelial damage due to ionizing radiation is the main pathological process of radiation injury and the main cause of damage to various organs in nuclear accidents. Ferroptosis plays an important role in ionizing radiation-induced cell death. We have previously reported that luteolin is highly resistant to ferroptosis. In the present study, body weight, microvessel count, H&E, and Masson staining results showed that luteolin rescued radial vascular injury in vivo. Cell Counting Kit 8 (CCK8), Giemsa staining clarified the anti-ferroptosis ability of luteolin with low toxicity. Malondialdehyde (MDA), superoxide dismutase (SOD), NADP+/NADPH, Fe2+ staining, dihydroethidium (DHE) and MitoTracker assays for ferroptosis-related metrics, we found that luteolin enhances human umbilical vein endothelial cells (HUVECs) antioxidant damage capacity. Drug affinity responsive target stability (DARTS), surface plasmon resonance (SPR), computer simulated docking and western blot showed that heat shock protein beta-1 (HSPB1) is one of the targets of luteolin action. Luteolin inhibits ferroptosis by promoting the protein expression of HSPB1/solute carrier family 7 member 11 (SLC7A11)/ glutathione peroxidase 4 (GPX4). In conclusion, we have preliminarily elucidated the antioxidant damage ferroptosis ability and the target of action of luteolin to provide a theoretical basis for the application of luteolin in radiation injury diseases., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Wen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF