5 results on '"Herington J"'
Search Results
2. Correction: Ventilation during COVID-19 in a school for students with intellectual and developmental disabilities (IDD).
- Author
-
Zand MS, Spallina S, Ross A, Zandi K, Pawlowski A, Seplaki CL, Herington J, Corbett AM, Kaukeinen K, Holden-Wiltse J, Freedman EG, Alcantara L, Li D, Cameron A, Beaumont N, Dozier A, Dewhurst S, and Foxe JJ
- Abstract
[This corrects the article DOI: 10.1371/journal.pone.0291840.]., (Copyright: © 2024 Zand et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
3. Investigating ethical tradeoffs in crisis standards of care through simulation of ventilator allocation protocols.
- Author
-
Herington J, Shand J, Holden-Wiltse J, Corbett A, Dees R, Ching CL, Shaw M, Cai X, and Zand M
- Subjects
- Humans, Aged, Middle Aged, Adult, Ventilators, Mechanical supply & distribution, Male, Female, Monte Carlo Method, SARS-CoV-2, Health Care Rationing ethics, New York, Pandemics, Aged, 80 and over, Computer Simulation, Respiration, Artificial, COVID-19 therapy, COVID-19 epidemiology, Standard of Care
- Abstract
Introduction: Arguments over the appropriate Crisis Standards of Care (CSC) for public health emergencies often assume that there is a tradeoff between saving the most lives, saving the most life-years, and preventing racial disparities. However, these assumptions have rarely been explored empirically. To quantitatively characterize possible ethical tradeoffs, we aimed to simulate the implementation of five proposed CSC protocols for rationing ventilators in the context of the COVID-19 pandemic., Methods: A Monte Carlo simulation was used to estimate the number of lives saved and life-years saved by implementing clinical acuity-, comorbidity- and age-based CSC protocols under different shortage conditions. This model was populated with patient data from 3707 adult admissions requiring ventilator support in a New York hospital system between April 2020 and May 2021. To estimate lives and life-years saved by each protocol, we determined survival to discharge and estimated remaining life expectancy for each admission., Results: The simulation demonstrated stronger performance for age-sensitive protocols. For a capacity of 1 bed per 2 patients, ranking by age bands saves approximately 29 lives and 3400 life-years per thousand patients. Proposed protocols from New York and Maryland which allocated without considering age saved the fewest lives (~13.2 and 8.5 lives) and life-years (~416 and 420 years). Unlike other protocols, the New York and Maryland algorithms did not generate significant disparities in lives saved and life-years saved between White non-Hispanic, Black non-Hispanic, and Hispanic sub-populations. For all protocols, we observed a positive correlation between lives saved and life-years saved, but also between lives saved overall and inequality in the number of lives saved in different race and ethnicity sub-populations., Conclusion: While there is significant variance in the number of lives saved and life-years saved, we did not find a tradeoff between saving the most lives and saving the most life-years. Moreover, concerns about racial discrimination in triage protocols require thinking carefully about the tradeoff between enforcing equality of survival rates and maximizing the lives saved in each sub-population., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Herington et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
4. Ventilation during COVID-19 in a school for students with intellectual and developmental disabilities (IDD).
- Author
-
Zand MS, Spallina S, Ross A, Zandi K, Pawlowski A, Seplaki CL, Herington J, Corbett AM, Kaukeinen K, Holden-Wiltse J, Freedman EG, Alcantara L, Li D, Cameron A, Beaumont N, Dozier A, Dewhurst S, and Foxe JJ
- Subjects
- Child, Humans, SARS-CoV-2, Carbon Dioxide analysis, Developmental Disabilities epidemiology, Schools, Students, Ventilation, COVID-19 epidemiology
- Abstract
Background: This study examined the correlation of classroom ventilation (air exchanges per hour (ACH)) and exposure to CO2 ≥1,000 ppm with the incidence of SARS-CoV-2 over a 20-month period in a specialized school for students with intellectual and developmental disabilities (IDD). These students were at a higher risk of respiratory infection from SARS-CoV-2 due to challenges in tolerating mitigation measures (e.g. masking). One in-school measure proposed to help mitigate the risk of SARS-CoV-2 infection in schools is increased ventilation., Methods: We established a community-engaged research partnership between the University of Rochester and the Mary Cariola Center school for students with IDD. Ambient CO2 levels were measured in 100 school rooms, and air changes per hour (ACH) were calculated. The number of SARS-CoV-2 cases for each room was collected over 20 months., Results: 97% of rooms had an estimated ACH ≤4.0, with 7% having CO2 levels ≥2,000 ppm for up to 3 hours per school day. A statistically significant correlation was found between the time that a room had CO2 levels ≥1,000 ppm and SARS-CoV-2 PCR tests normalized to room occupancy, accounting for 43% of the variance. No statistically significant correlation was found for room ACH and per-room SARS-CoV-2 cases. Rooms with ventilation systems using MERV-13 filters had lower SARS-CoV-2-positive PCR counts. These findings led to ongoing efforts to upgrade the ventilation systems in this community-engaged research project., Conclusions: There was a statistically significant correlation between the total time of room CO2 concentrations ≥1,000 and SARS-CoV-2 cases in an IDD school. Merv-13 filters appear to decrease the incidence of SARS-CoV-2 infection. This research partnership identified areas for improving in-school ventilation., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Zand et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
5. Alkaline phosphatase protects lipopolysaccharide-induced early pregnancy defects in mice.
- Author
-
Lei W, Ni H, Herington J, Reese J, and Paria BC
- Subjects
- Alkaline Phosphatase genetics, Animals, Disease Models, Animal, Embryo Implantation, Enzyme Activation, Female, Gene Expression, In Situ Hybridization, Inflammation etiology, Inflammation metabolism, Isoenzymes, Lipopolysaccharide Receptors genetics, Lipopolysaccharide Receptors metabolism, Mice, Myeloid Differentiation Factor 88 genetics, Myeloid Differentiation Factor 88 metabolism, Phosphorylation, Pregnancy, RNA, Messenger genetics, RNA, Messenger metabolism, Real-Time Polymerase Chain Reaction, Toll-Like Receptor 4 genetics, Toll-Like Receptor 4 metabolism, Uterus metabolism, Alkaline Phosphatase metabolism, Lipopolysaccharides adverse effects, Pregnancy Complications etiology
- Abstract
Excessive cytokine inflammatory response due to chronic or superphysiological level of microbial infection during pregnancy leads to pregnancy complications such as early pregnancy defects/loss and preterm birth. Bacterial toxin lipopolysaccharide (LPS), long recognized as a potent proinflammatory mediator, has been identified as a risk factor for pregnancy complications. Alkaline phosphatase (AP) isozymes have been shown to detoxify LPS by dephosphorylation. In this study, we examined the role of alkaline phosphatase (AP) in mitigating LPS-induced early pregnancy complications in mice. We found that 1) the uterus prior to implantation and implantation sites following embryo implantation produce LPS recognition and dephosphorylation molecules TLR4 and tissue non-specific AP (TNAP) isozyme, respectively; 2) uterine TNAP isozyme dephosphorylates LPS at its sites of production; 3) while LPS administration following embryo implantation elicits proinflammatory cytokine mRNA levels at the embryo implantation sites (EISs) and causes early pregnancy loss, dephosphorylated LPS neither triggers proinflammatory cytokine mRNA levels at the EISs nor induces pregnancy complications; 4) AP isozyme supplementation to accelerate LPS detoxification attenuates LPS-induced pregnancy complications following embryo implantation. These findings suggest that a LPS dephosphorylation strategy using AP isozyme may have a unique therapeutic potential to mitigate LPS- or Gram-negative bacteria-induced pregnancy complications in at-risk women.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.