1. Tropilaelaps mercedesae parasitism changes behavior and gene expression in honey bee workers.
- Author
-
Gao, Jing, Ma, Shilong, Wang, Xinling, Yang, Yang, Luo, Qihua, Wang, Xing, Liu, Feng, Wang, Qiang, Fu, Zhongmin, Diao, Qingyun, and Dai, Pingli
- Subjects
HONEYBEES ,BEE colonies ,GENE expression ,VARROA destructor ,PARASITISM ,LEARNING ability - Abstract
Tropilaelaps mercedesae is one of the most problematic honey bee parasites and has become more threatening to the beekeeping industry. Tropilaelaps can easily parasitize immature honey bees (larvae and pupae) and have both lethal and sublethal effects on the individual worker bees. Our study for the first time experimentally assessed the effects of T. mercedesae on olfactory learning, flight ability, homing ability as well as transcriptional changes in parasitized adult honey bees. T. mercedesae infestation had negative impacts on olfactory associated function, flight ability, and homing rate. The volume of the mushroom body significantly increased in infested honey bees, which may be correlated to the lower sucrose responsiveness as well as lower learning ability in the infested bees. The gene expression involved in immune systems and carbohydrate transport and metabolism were significantly different between infested bees and non-infested bees. Moreover, genes function in cell adhesion play an essential role in olfactory sensory in honey bees. Our findings provide a comprehensive understanding of European honey bees in response to T. mercedesae infestation, and could be used to further investigate the complex molecular mechanisms in honey bees under parasitic stress. Author summary: In recent decades, there has been serious concern about the decline of honey bees in the world. One of the most serious factors contributing to bee population declines is mite parasitism. Although Varroa destructor is the most widespread globally, Tropilaelaps mercedesae displays greater threat to bee colonies due to its smaller size, shorter phoretic phase, more rapid locomotion, as well as faster reproductive rate. Tropilaelaps mites, originally parasite of the giant Asian honey bees, now becoming an emerging threat of European honey bees (Apis mellifera) in Asian area. This work aimed to investigate the influence of T. mercedesae infestation on behavior and gene expression in A. mellifera. Our results highlight the T. mercedesae infestation induced negative effects of olfactory learning, flight ability, homing ability of honey bee workers. Moreover, we found that T. mercedesae infestation caused the up-regulation of genes involved in immune systems and carbohydrate mechanism which were correlated to the different olfactory learning performance in infested honeybee. In addition, genes function in cell adhesion play an essential role in olfactory sensory in honey bees. Our results increase the knowledge of proximate mechanisms in honey bee responding to parasitic stress. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF