1. A single amino acid residue in bank vole prion protein drives permissiveness to Nor98/atypical scrapie and the emergence of multiple strain variants.
- Author
-
Pirisinu, Laura, Di Bari, Michele Angelo, D'Agostino, Claudia, Vanni, Ilaria, Riccardi, Geraldina, Marcon, Stefano, Vaccari, Gabriele, Chiappini, Barbara, Benestad, Sylvie L., Agrimi, Umberto, and Nonno, Romolo
- Subjects
PRIONS ,AMINO acid residues ,CREUTZFELDT-Jakob disease ,SCRAPIE ,VOLES ,PRION diseases ,ANIMAL diseases ,BIOLOGICAL evolution - Abstract
Prions are infectious agents that replicate through the autocatalytic misfolding of the cellular prion protein (PrP
C ) into infectious aggregates (PrPSc ) causing fatal neurodegenerative diseases in humans and animals. Prions exist as strains, which are encoded by conformational variants of PrPSc . The transmissibility of prions depends on the PrPC sequence of the recipient host and on the incoming prion strain, so that some animal prion strains are more contagious than others or are transmissible to new species, including humans. Nor98/atypical scrapie (AS) is a prion disease of sheep and goats reported in several countries worldwide. At variance with classical scrapie (CS), AS is considered poorly contagious and is supposed to be spontaneous in origin. The zoonotic potential of AS, its strain variability and the relationships with the more contagious CS strains remain largely unknown. We characterized AS isolates from sheep and goats by transmission in ovinised transgenic mice (tg338) and in two genetic lines of bank voles, carrying either methionine (BvM) or isoleucine (BvI) at PrP residue 109. All AS isolates induced the same pathological phenotype in tg338 mice, thus proving that they encoded the same strain, irrespective of their geographical origin or source species. In bank voles, we found that the M109I polymorphism dictates the susceptibility to AS. BvI were susceptible and faithfully reproduced the AS strain, while the transmission in BvM was highly inefficient and was characterized by a conformational change towards a CS-like prion strain. Sub-passaging experiments revealed that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible animals. These findings add new clues for a better comprehension of strain selection dynamics in prion infections and have wider implications for understanding the origin of contagious prion strains, such as CS. Author summary: Prions are transmissible agents responsible for fatal neurodegenerative diseases in humans and animals. Prions exist as strains, exhibiting distinct disease phenotypes and transmission properties. Some prion diseases occur sporadically with a supposedly spontaneous origin, while others are contagious and give rise to epidemics, mainly in animals. We investigated the strain properties of Nor98/atypical scrapie (AS), a sporadic prion disease of small ruminants. We found that AS was faithfully reproduced not only in a homologous context, i.e. ovinised transgenic mice, but also in an unrelated animal species, the bank vole. A natural polymorphism of the bank vole prion protein, coding for methionine (BvM) or for isoleucine (BvI) at codon 109, dictated the susceptibility of voles to AS, with BvI being highly susceptible to AS and BvM rather resistant. Most importantly, the M109I polymorphism mediated the emergence of AS-derived mutant prion strains resembling classical scrapie (CS), a contagious prion disease. Finally, by sub-passages in bank voles, we found that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible vole lines. These findings allow a better understanding of strain selection dynamics and suggest a link between sporadic and contagious prion diseases. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF