1. Evaluation of protein kinase D auto-phosphorylation as biomarker for NLRP3 inflammasome activation.
- Author
-
Heiser, Diane, Rubert, Joëlle, Unterreiner, Adeline, Maurer, Claudine, Kamke, Marion, Bodendorf, Ursula, Farady, Christopher J., Roediger, Ben, and Bornancin, Frédéric
- Subjects
NLRP3 protein ,INFLAMMASOMES ,PROTEIN kinases ,SPACE probes ,BIOMARKERS ,CASPASES - Abstract
Background: The NLRP3 inflammasome is a critical component of sterile inflammation, which is involved in many diseases. However, there is currently no known proximal biomarker for measuring NLRP3 activation in pathological conditions. Protein kinase D (PKD) has emerged as an important NLRP3 kinase that catalyzes the release of a phosphorylated NLRP3 species that is competent for inflammasome complex assembly. Methods: To explore the potential for PKD activation to serve as a selective biomarker of the NLRP3 pathway, we tested various stimulatory conditions in THP-1 and U937 cell lines, probing the inflammasome space beyond NLRP3. We analyzed the correlation between PKD activation (monitored by its auto-phosphorylation) and functional inflammasome readouts. Results: PKD activation/auto-phosphorylation always preceded cleavage of caspase-1 and gasdermin D, and treatment with the PKD inhibitor CRT0066101 could block NLRP3 inflammasome assembly and interleukin-1β production. Conversely, blocking NLRP3 either genetically or using the MCC950 inhibitor prevented PKD auto-phosphorylation, indicating a bidirectional functional crosstalk between NLRP3 and PKD. Further assessments of the pyrin and NLRC4 pathways, however, revealed that PKD auto-phosphorylation can be triggered by a broad range of stimuli unrelated to NLRP3 inflammasome assembly. Conclusion: Although PKD and NLRP3 become functionally interconnected during NLRP3 activation, the promiscuous reactivity of PKD challenges its potential use for tracing the NLRP3 inflammasome pathway. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF