1. Haloketones: A class of unregulated priority DBPs with high contribution to drinking water cytotoxicity.
- Author
-
Qiu T, Shi W, Chen J, and Li J
- Subjects
- Animals, CHO Cells, Disinfection, Water Purification, Cricetinae, Ketones toxicity, Disinfectants toxicity, Cricetulus, Drinking Water, Water Pollutants, Chemical toxicity
- Abstract
Although unregulated aliphatic disinfection byproducts (DBPs) had a much higher concentration and cytotoxicity than known aromatic DBPs, a recent study indicated that seven classes of regulated and unregulated priority DBPs (one and two-carbon-atom DBPs) just accounted for 16.2% of disinfected water cytotoxicity in the U.S., meaning some of the highly toxic aliphatic DBPs may be overlooked. Haloketones (HKs) are an essential class of priority DBPs with a 1-100 µg/L concentration in drinking water but lack cytotoxicity data. This study investigated the cytotoxicity of seven HKs using Chinese hamster ovary (CHO) cells. The order for cytotoxicity of HKs from most to least toxic was: 1,3-dichloroacetone (LC
50 : 1.0 ± 0.20 μM) ≈ 1,3-dibromoacetone (1.5 ± 0.19 μM) ≈ bromoacetone (1.9 ± 0.49 μM) > chloroacetone (4.3 ± 0.22 μM) > 1,1,3-trichloropropanone (6.6 ± 0.46 μM) > 1,1,1-trichloroacetone (222 ± 7.7 μM) > hexachloroacetone (3269 ± 344 μM). The cytotoxicity of HKs was higher than most regulated and priority aliphatic DBPs in mono-halogenated, di-halogenated, and tri-halogenated categories. A prediction model of HK cytotoxicity was developed based on the quantitative structure-activity relationship (QSAR), optimizing structures and computing descriptors with Gaussian 09 W. The average concentrations of HKs in representative drinking water samples from South Carolina (U.S.) and Suzhou (China) were 12.4 and 0.9 μg/L, respectively, accounting for 18.8% and 1.7% of their specific total DBPs measured (i.e. not TOX). For South Carolina drinking water, their contributions to total calculated additive cytotoxicity of aliphatic DBPs and overall drinking water cytotoxicity were 86.7% and 14.0%, respectively, demonstrating that HKs are an essential class of overlooked DBPs with a high contribution to drinking water cytotoxicity. Our study can help to explain the conflict that why regulated and priority DBPs (except HKs) just accounted for 16% of chlorinated drinking water cytotoxicity even enough they had much higher concentration and cytotoxicity than known aromatic DBPs., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF