1. Regulation of Pathways Determining Cholesterol Availability in the Baboon Placenta with Advancing Gestation1
- Author
-
Wenliang Shi, Sandra K. Erickson, Kenneth F. Swan, Michael C. Henson, Jennifer S. O’Neil, and Steven R. Lear
- Subjects
medicine.medical_specialty ,LDL Pathway ,Cholesterol ,Sterol O-acyltransferase ,Cell Biology ,General Medicine ,Biology ,chemistry.chemical_compound ,Endocrinology ,Syncytiotrophoblast ,medicine.anatomical_structure ,Reproductive Medicine ,chemistry ,Internal medicine ,Placenta ,biology.animal ,Low-density lipoprotein ,LDL receptor ,medicine ,lipids (amino acids, peptides, and proteins) ,Baboon - Abstract
Low density lipoprotein (LDL) is accepted as the primary source of cholesterol for progesterone biosynthesis in the primate placental syncytiotrophoblast. We hypothesized that the syncytiotrophoblast may, however, derive significant amounts of cholesterol from sources in addition to the LDL pathway, especially during early pregnancy or when faced with a paucity of lipoprotein-cholesterol. To test this, alternate cholesterol-providing pathways were assessed in placentae at early (Days 60-61), mid (Days 98-102), and late (Days 160-167) gestation in the baboon (Papio sp., term approximately 184 days). Expression of LDL receptor mRNA transcripts in an enriched fraction of syncytiotrophoblast cells was approximately 13-fold greater (P < 0.05) in mid and late gestation than in early pregnancy, although no differences were observed in whole villous tissue. The abundance of transcripts for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the enzyme responsible for de novo cholesterol synthesis, remained unchanged in syncytiotrophoblast cells; however, HMG-CoA reductase activity declined approximately 2-fold from early to late pregnancy (P < 0.01), with a commensurate decline in immunoreactive HMG-CoA reductase protein. Activities for acyl-coenzyme A:cholesterol acyl transferase (ACAT), a rate-limiting enzyme for cholesterol esterification, were greater (P < 0.05) at early and mid pregnancy in placental homogenates than in those from late pregnancy, while ACAT-1 mRNA concentrations and cholesterol ester hydrolase activity remained unchanged. These results, taken together, suggest that although de novo synthesis has the potential to provide a measure of the cholesterol used for placental progesterone production during early baboon pregnancy, its contribution declines with advancing gestational age as LDL receptor-derived cholesterol becomes the major source of substrate. Changes in LDL receptor mRNA abundance suggest differences in mechanisms regulating cholesterol homeostasis in steroidogenically active syncytiotrophoblasts vs. proliferative nonendocrine cell types in the placenta.
- Published
- 1999
- Full Text
- View/download PDF