1. Properties of the simulated circumgalactic medium
- Author
-
Cassandra Lochhaas, Drummond Fielding, Miao Li, Yuan Li, and Greg L. Bryan
- Subjects
Physics ,Degree (graph theory) ,010308 nuclear & particles physics ,Dark matter ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Radius ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,Galaxy ,law.invention ,Space and Planetary Science ,law ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Galaxy formation and evolution ,Dynamic pressure ,Halo ,Hydrostatic equilibrium ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
The circumgalactic medium (CGM) is closely linked to galaxy formation and evolution, but difficult to characterize observationally and typically poorly resolved in cosmological simulations. We use spherically-symmetric, idealized, high-resolution simulations of the CGM in $10^{12}M_\odot$ and $10^{11}M_\odot$ dark matter halos to characterize the gas pressure, turbulent and radial velocities, and degree of thermal and effective dynamic pressure support in the overall CGM as well as in its high- and low-temperature phases. We find that the $10^{12}M_\odot$ halo contains a CGM mostly formed of a hot gas halo in hydrostatic equilibrium out of which cold gas condenses and falls onto the central galaxy, while the $10^{11}M_\odot$ halo's CGM is not in hydrostatic equilibrium, has a wider spread of properties at a given galactocentric radius, does not have a clear separation of hot and cold phases, and is dominated by bulk motions. We also find that the degree of pressure support in the $10^{11}M_\odot$ halo is strongly dependent on the parameters of the galactic winds of the central galaxy. These results promote the idea that there is no "average" CGM and care must be taken when setting the initial conditions for a small-box simulation of a patch of the CGM., 20 pages, 17 figures, accepted by MNRAS
- Published
- 2020