1. KNOX protein KNAT1 regulates fruitlet abscission in litchi by repressing ethylene biosynthetic genes.
- Author
-
Zhao M, Li C, Ma X, Xia R, Chen J, Liu X, Ying P, Peng M, Wang J, Shi CL, and Li J
- Subjects
- Ethylenes, Fruit genetics, Fruit metabolism, Gene Expression Regulation, Plant, Homeodomain Proteins, Plant Proteins genetics, Plant Proteins metabolism, Arabidopsis genetics, Arabidopsis metabolism, Arabidopsis Proteins genetics, Litchi genetics, Litchi metabolism
- Abstract
Abscission is triggered by multiple environmental and developmental cues, including endogenous plant hormones. KNOTTED-LIKE HOMEOBOX (KNOX) transcription factors (TFs) play an important role in controlling abscission in plants. However, the underlying molecular mechanism of KNOX TFs in abscission is largely unknown. Here, we identified LcKNAT1, a KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1)-like protein from litchi, which regulates abscission by modulating ethylene biosynthesis. LcKNAT1 is expressed in the fruit abscission zone and its expression decreases during fruitlet abscission. Furthermore, the expression of the ethylene biosynthetic genes LcACS1, LcACS7, and LcACO2 increases in the fruit abscission zone, in parallel with the emission of ethylene in fruitlets. In vitro and in vivo assays revealed that LcKNAT1 inhibits the expression of LcACS/ACO genes by directly binding to their promoters. Moreover, ectopic expression of LcKNAT1 represses flower abscission in tomatoes. Transgenic plants expressing LcKNAT1 also showed consistently decreased expression of ACS/ACO genes. Collectively, these results indicate that LcKNAT1 represses abscission via the negative regulation of ethylene biosynthesis., (© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF