6 results on '"Imbach, L"'
Search Results
2. Multicentre analysis of seizure outcome predicted by removal of high frequency oscillations.
- Author
-
Dimakopoulos V, Gotman J, Klimes P, von Ellenrieder N, Tan SB, Smith G, Gliske S, Maltseva M, Manalo MK, Pail M, Brazdil M, van Blooijs D, van 't Klooster M, Johnson S, Laboy S, Ledergerber D, Imbach L, Papadelis C, Sperling MR, Zijlmans M, Cimbalnik J, Jacobs J, Stacey WC, Frauscher B, and Sarnthein J
- Abstract
In drug-resistant focal epilepsy, planning surgical resection may involve presurgical intracranial EEG recordings (iEEG) to detect seizures and other iEEG patterns to improve postsurgical seizure outcome. We hypothesized that resection of tissue generating interictal high frequency oscillations (HFOs, 80-500 Hz) in the iEEG predicts surgical outcome. Eight international epilepsy centres recorded iEEG during the patients' pre-surgical evaluation. The patients were of all ages, had epilepsy of all types, and underwent surgical resection of a single focus aiming at seizure freedom. In a prospective analysis we applied a fully automated definition of HFO which was independent of the dataset. Using an observational cohort design that was blinded to postsurgical seizure outcome, we analysed HFO rates during non-rapid-eye-movement sleep. If channels had consistently high rates over multiple epochs, they were labelled the "HFO area". After HFO analysis, centres provided the electrode contacts located in the resected volume and the seizure outcome at follow-up ≥24 months after surgery. The study was registered at www.clinicaltrials.gov (NCT05332990). We received 160 iEEG datasets. In 146 datasets (91%), the HFO area could be defined. The patients with completely resected HFO area were more likely to achieve seizure freedom compared to those without (OR 2.61 CI [1.15-5.91], P = 0.02). Among seizure free patients, the HFO area was completely resected in 31 and was not completely resected in 43. Among patients with recurrent seizures, the HFO area was completely resected in 14 and was not completely resected in 58. When predicting seizure freedom, the negative predictive value of the HFO area (68% CI [52-81]) was higher than that for the resected volume as predictor by itself (51% CI [42-59], P = 4e-5). The sensitivity and specificity for complete HFO area resection were 0.88 CI [0.72-0.98] and 0.39 CI [0.25-0.54] and the area under the curve was 0.83 CI [0.58-0.97], indicating good predictive performance. In a blinded cohort study from independent epilepsy centres, applying a previously validated algorithm for HFO marking without the need of adjusting to new datasets allowed us to validate the clinical relevance of HFOs to plan the surgical resection., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2024
- Full Text
- View/download PDF
3. Self-modulation of the sense of agency via neurofeedback enhances sensory-guided behavioral control.
- Author
-
Zito GA, de Sousa Ribeiro R, Kamal E, Ledergerber D, Imbach L, and Polania R
- Subjects
- Humans, Behavior Control, Electroencephalography methods, Theta Rhythm physiology, Brain, Neurofeedback physiology
- Abstract
The sense of agency is a fundamental aspect of human self-consciousness, whose neural correlates encompass widespread brain networks. Research has explored the neuromodulatory properties of the sense of agency with noninvasive brain stimulation, which induces exogenous manipulations of brain activity; however, it is unknown whether endogenous modulation of the sense of agency is also achievable. We investigated whether the sense of agency can be self-regulated with electroencephalography-based neurofeedback. We conducted 2 experiments in which healthy humans performed a motor task while their motor control was artificially disrupted, and gave agency statements on their perceived control. We first identified the electrophysiological response to agency processing, and then applied neurofeedback in a parallel, sham-controlled design, where participants learnt to self-modulate their sense of agency. We found that behavioral measures of agency and performance on the task decreased with the increasing disruption of control. This was negatively correlated with power spectral density in the theta band, and positively correlated in the alpha and beta bands, at central and parietal electrodes. After neurofeedback training of central theta rhythms, participants improved their actual control over the task, and this was associated with a significant decrease in the frequency band trained via neurofeedback. Thus, self-regulation of theta rhythms can improve sensory-guided behavior., (© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
4. Functional network dynamics between the anterior thalamus and the cortex in deep brain stimulation for epilepsy.
- Author
-
Aiello G, Ledergerber D, Dubcek T, Stieglitz L, Baumann C, Polanìa R, and Imbach L
- Subjects
- Male, Humans, Adult, Middle Aged, Seizures therapy, Thalamus physiology, Anterior Thalamic Nuclei, Deep Brain Stimulation, Epilepsy therapy, Drug Resistant Epilepsy therapy
- Abstract
Owing to its unique connectivity profile with cortical brain regions, and its suggested role in the subcortical propagation of seizures, the anterior nucleus of the thalamus (ANT) has been proposed as a key deep brain stimulation (DBS) target in drug-resistant epilepsy. However, the spatio-temporal interaction dynamics of this brain structure, and the functional mechanisms underlying ANT DBS in epilepsy remain unknown. Here, we study how the ANT interacts with the neocortex in vivo in humans and provide a detailed neurofunctional characterization of mechanisms underlying the effectiveness of ANT DBS, aiming at defining intraoperative neural biomarkers of responsiveness to therapy, assessed at 6 months post-implantation as the reduction in seizure frequency. A cohort of 15 patients with drug-resistant epilepsy (n = 6 males, age = 41.6 ± 13.79 years) underwent bilateral ANT DBS implantation. Using intraoperative cortical and ANT simultaneous electrophysiological recordings, we found that the ANT is characterized by high amplitude θ (4-8 Hz) oscillations, mostly in its superior part. The strongest functional connectivity between the ANT and the scalp EEG was also found in the θ band in ipsilateral centro-frontal regions. Upon intraoperative stimulation in the ANT, we found a decrease in higher EEG frequencies (20-70 Hz) and a generalized increase in scalp-to-scalp connectivity. Crucially, we observed that responders to ANT DBS treatment were characterized by higher EEG θ oscillations, higher θ power in the ANT, and stronger ANT-to-scalp θ connectivity, highlighting the crucial role of θ oscillations in the dynamical network characterization of these structures. Our study provides a comprehensive characterization of the interaction dynamic between the ANT and the cortex, delivering crucial information to optimize and predict clinical DBS response in patients with drug-resistant epilepsy., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
5. Protocol for multicentre comparison of interictal high-frequency oscillations as a predictor of seizure freedom.
- Author
-
Dimakopoulos V, Gotman J, Stacey W, von Ellenrieder N, Jacobs J, Papadelis C, Cimbalnik J, Worrell G, Sperling MR, Zijlmans M, Imbach L, Frauscher B, and Sarnthein J
- Abstract
In drug-resistant focal epilepsy, interictal high-frequency oscillations (HFOs) recorded from intracranial EEG (iEEG) may provide clinical information for delineating epileptogenic brain tissue. The iEEG electrode contacts that contain HFO are hypothesized to delineate the epileptogenic zone; their resection should then lead to postsurgical seizure freedom. We test whether our prospective definition of clinically relevant HFO is in agreement with postsurgical seizure outcome. The algorithm is fully automated and is equally applied to all data sets. The aim is to assess the reliability of the proposed detector and analysis approach. We use an automated data-independent prospective definition of clinically relevant HFO that has been validated in data from two independent epilepsy centres. In this study, we combine retrospectively collected data sets from nine independent epilepsy centres. The analysis is blinded to clinical outcome. We use iEEG recordings during NREM sleep with a minimum of 12 epochs of 5 min of NREM sleep. We automatically detect HFO in the ripple (80-250 Hz) and in the fast ripple (250-500 Hz) band. There is no manual rejection of events in this fully automated algorithm. The type of HFO that we consider clinically relevant is defined as the simultaneous occurrence of a fast ripple and a ripple. We calculate the temporal consistency of each patient's HFO rates over several data epochs within and between nights. Patients with temporal consistency <50% are excluded from further analysis. We determine whether all electrode contacts with high HFO rate are included in the resection volume and whether seizure freedom (ILAE 1) was achieved at ≥2 years follow-up. Applying a previously validated algorithm to a large cohort from several independent epilepsy centres may advance the clinical relevance and the generalizability of HFO analysis as essential next step for use of HFO in clinical practice., (© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2022
- Full Text
- View/download PDF
6. Survival of brain tumour patients with epilepsy.
- Author
-
Mastall M, Wolpert F, Gramatzki D, Imbach L, Becker D, Schmick A, Hertler C, Roth P, Weller M, and Wirsching HG
- Subjects
- Cohort Studies, Female, Glioblastoma complications, Glioblastoma mortality, Humans, Male, Meningeal Neoplasms complications, Meningeal Neoplasms mortality, Meningioma complications, Meningioma mortality, Prognosis, Progression-Free Survival, Brain Neoplasms complications, Brain Neoplasms mortality, Epilepsy etiology
- Abstract
Pro-tumorigenic electrochemical synapses between neurons and brain tumour cells in preclinical studies suggest unfavourable effects of epilepsy on patient survival. We investigated associations of epilepsy and survival in three cohorts of brain tumour patients (meningioma, glioblastoma and brain metastases). Cohorts were segregated into three groups for comparative analyses: (i) no epilepsy; (ii) epilepsy without status epilepticus; and (iii) status epilepticus. Status epilepticus was considered a surrogate of extensive neuronal hyperexcitability. The main outcome was progression-free survival (meningioma) and overall survival (glioblastoma and brain metastases), adjusted for established prognostic factors and onset of epilepsy by time-dependent multivariate Cox modelling. The primary analysis population comprised 1792 patients (742 meningioma, 249 glioblastoma, 801 brain metastases). Epilepsy was associated with favourable prognostic factors. However, on multivariate analyses, status epilepticus was associated with inferior overall survival of patients with glioblastoma [status epilepticus versus no epilepsy multivariate hazard ratio (HR) 3.72, confidence interval (CI) 1.78-7.76, P < 0.001] and brain metastases (status epilepticus versus no epilepsy HR 2.30, CI 1.10-4.79, P = 0.026). Among brain metastases patients, but not among patients with meningioma or glioblastoma, epilepsy was similarly associated with inferior overall survival (epilepsy versus no epilepsy HR 2.16, CI 1.60-2.93, P < 0.001). We conclude that epilepsy may convey inferior survival of patients with malignant brain tumours., (© The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.