1. Signs of a Glucose- and Insulin-Independent Gut-Bone Axis and Aberrant Bone Homeostasis in Type 1 Diabetes.
- Author
-
Hartmann B, Longo M, Mathiesen DS, Hare KJ, Jørgensen NR, Esposito K, Deacon CF, Vilsbøll T, Holst JJ, and Knop FK
- Subjects
- Humans, Biomarkers, Blood Glucose metabolism, Bone Remodeling, Case-Control Studies, Collagen Type I, Glucose, Homeostasis, Insulin, Peptide Fragments, Procollagen, Bone Resorption, Diabetes Mellitus, Type 1
- Abstract
Context: Gut hormones seem to play an important role in postprandial bone turnover, which also may be affected by postprandial plasma glucose excursions and insulin secretion., Objective: To investigate the effect of an oral glucose tolerance test (OGTT) and an isoglycemic intravenous glucose infusion (IIGI) on bone resorption and formation markers in individuals with type 1 diabetes and healthy controls., Methods: This observational case-control study, conducted at the Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark, included 9 individuals with C-peptide negative type 1 diabetes and 8 healthy controls matched for gender, age, and body mass index. Subjects underwent an OGTT and a subsequent IIGI. We analyzed changes in bone resorption assessed by measurements of carboxy-terminal type I collagen crosslinks (CTX) and in bone formation as assessed by procollagen type I N-terminal propeptide (PINP) concentrations., Results: Baseline CTX and PINP levels were similar in the 2 groups. Both groups exhibited significantly greater suppression of CTX during OGTT than IIGI. PINP levels were unaffected by OGTT and IIGI, respectively, in healthy controls. Participants with type 1 diabetes displayed impaired suppression of CTX-assessed bone resorption and inappropriate suppression of PINP-assessed bone formation during OGTT., Conclusion: Our data suggest the existence of a gut-bone axis reducing bone resorption in response to oral glucose independently of plasma glucose excursions and insulin secretion. Subjects with type 1 diabetes showed impaired suppression of bone resorption and reduced bone formation during OGTT, which may allude to the reduced bone mineral density and increased fracture risk characterizing these individuals., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF