1. KGETCDA: an efficient representation learning framework based on knowledge graph encoder from transformer for predicting circRNA-disease associations.
- Author
-
Wu J, Ning Z, Ding Y, Wang Y, Peng Q, and Fu L
- Subjects
- Humans, Pattern Recognition, Automated, Learning, Databases, Factual, Knowledge Bases, Computational Biology, RNA, Circular, RNA, Long Noncoding
- Abstract
Recent studies have demonstrated the significant role that circRNA plays in the progression of human diseases. Identifying circRNA-disease associations (CDA) in an efficient manner can offer crucial insights into disease diagnosis. While traditional biological experiments can be time-consuming and labor-intensive, computational methods have emerged as a viable alternative in recent years. However, these methods are often limited by data sparsity and their inability to explore high-order information. In this paper, we introduce a novel method named Knowledge Graph Encoder from Transformer for predicting CDA (KGETCDA). Specifically, KGETCDA first integrates more than 10 databases to construct a large heterogeneous non-coding RNA dataset, which contains multiple relationships between circRNA, miRNA, lncRNA and disease. Then, a biological knowledge graph is created based on this dataset and Transformer-based knowledge representation learning and attentive propagation layers are applied to obtain high-quality embeddings with accurately captured high-order interaction information. Finally, multilayer perceptron is utilized to predict the matching scores of CDA based on their embeddings. Our empirical results demonstrate that KGETCDA significantly outperforms other state-of-the-art models. To enhance user experience, we have developed an interactive web-based platform named HNRBase that allows users to visualize, download data and make predictions using KGETCDA with ease. The code and datasets are publicly available at https://github.com/jinyangwu/KGETCDA., (© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF