1. Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers
- Author
-
Mencacci, N.E., Isaias, I.U., Reich, M.M., Ganos, C., Plagnol, V., Polke, J.M., Bras, J., Hersheson, J., Stamelou, M., Pittman, A.M., Noyce, A.J., Mok, K.Y., Opladen, T., Kunstmann, E., Hodecker, S., Münchau, A., Volkmann, J., Samnick, S., Sidle, K., Nanji, T., Sweeney, M.G., Houlden, H., Batla, A., Zecchinelli, A.L., Pezzoli, G., Marotta, G., Lees, A., Alegria, P., Krack, P., Cormier-Dequaire, F., Lesage, S., Brice, A., Heutink, P., Gasser, T., Lubbe, S.J., Morris, H.R., Taba, P., Kõks, S., Majounie, E., Raphael Gibbs, J., Singleton, A., Hardy, J., Klebe, S., Bhatia, K.P., Wood, N.W., Mencacci, N.E., Isaias, I.U., Reich, M.M., Ganos, C., Plagnol, V., Polke, J.M., Bras, J., Hersheson, J., Stamelou, M., Pittman, A.M., Noyce, A.J., Mok, K.Y., Opladen, T., Kunstmann, E., Hodecker, S., Münchau, A., Volkmann, J., Samnick, S., Sidle, K., Nanji, T., Sweeney, M.G., Houlden, H., Batla, A., Zecchinelli, A.L., Pezzoli, G., Marotta, G., Lees, A., Alegria, P., Krack, P., Cormier-Dequaire, F., Lesage, S., Brice, A., Heutink, P., Gasser, T., Lubbe, S.J., Morris, H.R., Taba, P., Kõks, S., Majounie, E., Raphael Gibbs, J., Singleton, A., Hardy, J., Klebe, S., Bhatia, K.P., and Wood, N.W.
- Abstract
GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedigrees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson’s disease-like nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contribute to the risk of developing Parkinson’s disease, even in the absence of a family history for DOPA-responsive dystonia. The frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson’s disease and 5935 control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I, K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V). The frequency of GCH1 variants was significantly higher (Fisher’s exact test P-value 0.0001) in cases (10/1318 = 0.75%) than in controls (6/5935 = 0.1%; odds ratio 7.5; 95% confidence interval 2.4–25.3). Our results show that rare GCH1 variants are associated with an increased risk for Parkinson’s disease. These findings expand the clinical and biological relevance of GTP cycloydrolase 1 deficiency, sugges
- Published
- 2014