1. Twisted electromagnetic sinc Schell-model beam and its transmission in a turbulent atmosphere.
- Author
-
CHANGYOU ZHANG and WENYU FU
- Subjects
- *
RADIANT intensity , *ATMOSPHERIC turbulence , *OPTICAL communications , *WAREHOUSES , *ATMOSPHERE , *INTEGRALS - Abstract
We present the twisted electromagnetic sinc-correlation Schell-model (EM TSSM) beam as an extension of the cylindrical sinc Schell-model beam and analyze the necessary source parameter conditions to generate a physically viable beam. Furthermore, we thoroughly investigate the propagation properties of the EM TSSM beam in atmospheric turbulence using the extended Huygens-Fresnel integral, explicitly focusing on spectral intensity, degree of polarization (DOP), and degree of coherence (DOC). It shows that the twisted phase has a noticeable impact on the intensity profiles of these beams, causing them to exhibit rotation and self-splitting while still maintaining their shape in free space. Moreover, during propagation through a turbulent atmosphere, it exhibits self-combining properties over a long range and recovers the plat-topped distribution. Compared with the sinc Schell-model beam without the twisted phase, the DOP distribution of such a beam can rotate around its distribution center. As these beams propagate through turbulent atmospheres, they can self-heal their DOP distribution within specific ranges affected by atmospheric turbulence. A twist factor causes non-unidirectional rotation of the DOC distribution in free space. The DOC gradually transforms from multi-strip profiles into a Gaussian-like distribution. Furthermore, the beam parameters play a crucial role in shaping the DOC. The results will be useful in optical trapping and optical communication. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF