1. Machine learning-based classification of mitochondrial morphology in primary neurons and brain.
- Author
-
Fogo GM, Anzell AR, Maheras KJ, Raghunayakula S, Wider JM, Emaus KJ, Bryson TD, Bukowski MJ, Neumar RW, Przyklenk K, and Sanderson TH
- Subjects
- Animals, Brain metabolism, Brain ultrastructure, Humans, Image Processing, Computer-Assisted, Mice, Microscopy, Electron, Scanning, Mitochondria metabolism, Mitochondrial Dynamics, Nerve Net diagnostic imaging, Neurons metabolism, Brain diagnostic imaging, Machine Learning, Mitochondria ultrastructure, Neurons ultrastructure
- Abstract
The mitochondrial network continually undergoes events of fission and fusion. Under physiologic conditions, the network is in equilibrium and is characterized by the presence of both elongated and punctate mitochondria. However, this balanced, homeostatic mitochondrial profile can change morphologic distribution in response to various stressors. Therefore, it is imperative to develop a method that robustly measures mitochondrial morphology with high accuracy. Here, we developed a semi-automated image analysis pipeline for the quantitation of mitochondrial morphology for both in vitro and in vivo applications. The image analysis pipeline was generated and validated utilizing images of primary cortical neurons from transgenic mice, allowing genetic ablation of key components of mitochondrial dynamics. This analysis pipeline was further extended to evaluate mitochondrial morphology in vivo through immunolabeling of brain sections as well as serial block-face scanning electron microscopy. These data demonstrate a highly specific and sensitive method that accurately classifies distinct physiological and pathological mitochondrial morphologies. Furthermore, this workflow employs the use of readily available, free open-source software designed for high throughput image processing, segmentation, and analysis that is customizable to various biological models.
- Published
- 2021
- Full Text
- View/download PDF