1. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture
- Author
-
Camilla Luni, Anna Manfredi, Giovanni Giuseppe Giobbe, Vivian S. W. Li, Paolo De Coppi, Monica Giomo, Davide Cacchiarelli, Simon Eaton, L Meran, Kai Kretzschmar, Martina M. De Santis, Nicola Elvassore, Federica Michielin, Claire Crowley, Qianjiang Hu, Sara Campinoti, Moustafa Khedr, Luca Urbani, Hans Clevers, Paola Bonfanti, Elisa Zambaiti, Gijs van Son, Giobbe, G. G., Crowley, C., Luni, C., Campinoti, S., Khedr, M., Kretzschmar, K., De Santis, M. M., Zambaiti, E., Michielin, F., Meran, L., Hu, Q., van Son, G., Urbani, L., Manfredi, A., Giomo, M., Eaton, S., Cacchiarelli, D., Li, V. S. W., Clevers, H., Bonfanti, P., Elvassore, N., De Coppi, P., Hubrecht Institute for Developmental Biology and Stem Cell Research, Giobbe G.G., Crowley C., Luni C., Campinoti S., Khedr M., Kretzschmar K., De Santis M.M., Zambaiti E., Michielin F., Meran L., Hu Q., van Son G., Urbani L., Manfredi A., Giomo M., Eaton S., Cacchiarelli D., Li V.S.W., Clevers H., Bonfanti P., Elvassore N., and De Coppi P.
- Subjects
Organoid ,0301 basic medicine ,Swine ,General Physics and Astronomy ,02 engineering and technology ,Regenerative medicine ,Extracellular matrix ,Tissue Scaffold ,lcsh:Science ,proteomic ,mass spectrometry ,ARCHITECTURE ,Multidisciplinary ,Decellularization ,Tissue Scaffolds ,Chemistry ,GMP ,Intestinal stem cells ,Endoderm ,Hydrogels ,021001 nanoscience & nanotechnology ,3. Good health ,Cell biology ,Extracellular Matrix ,Organoids ,Multidisciplinary Sciences ,Tissues ,medicine.anatomical_structure ,decellularized ,Self-healing hydrogels ,Science & Technology - Other Topics ,GROWTH ,0210 nano-technology ,STEM-CELLS ,Human ,EXPRESSION ,Science ,EPITHELIUM ,SMALL-INTESTINAL SUBMUCOSA ,Article ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,Animals ,Cell Proliferation ,Humans ,Tissue Engineering ,LONG-TERM EXPANSION ,In vivo ,COLON ,medicine ,Science & Technology ,IDENTIFICATION ,Animal ,Cell growth ,General Chemistry ,IN-VITRO ,Hydrogel ,030104 developmental biology ,lcsh:Q ,small intestine - Abstract
Organoids have extensive therapeutic potential and are increasingly opening up new avenues within regenerative medicine. However, their clinical application is greatly limited by the lack of effective GMP-compliant systems for organoid expansion in culture. Here, we envisage that the use of extracellular matrix (ECM) hydrogels derived from decellularized tissues (DT) can provide an environment capable of directing cell growth. These gels possess the biochemical signature of tissue-specific ECM and have the potential for clinical translation. Gels from decellularized porcine small intestine (SI) mucosa/submucosa enable formation and growth of endoderm-derived human organoids, such as gastric, hepatic, pancreatic, and SI. ECM gels can be used as a tool for direct human organoid derivation, for cell growth with a stable transcriptomic signature, and for in vivo organoid delivery. The development of these ECM-derived hydrogels opens up the potential for human organoids to be used clinically., Organoid cultures have been developed from multiple tissues, opening new possibilities for regenerative medicine. Here the authors demonstrate the derivation of GMP-compliant hydrogels from decellularized porcine small intestine which support formation and growth of human gastric, liver, pancreatic and small intestinal organoids.
- Published
- 2019