1. Attosecond delays in X-ray molecular ionization.
- Author
-
Driver T, Mountney M, Wang J, Ortmann L, Al-Haddad A, Berrah N, Bostedt C, Champenois EG, DiMauro LF, Duris J, Garratt D, Glownia JM, Guo Z, Haxton D, Isele E, Ivanov I, Ji J, Kamalov A, Li S, Lin MF, Marangos JP, Obaid R, O'Neal JT, Rosenberger P, Shivaram NH, Wang AL, Walter P, Wolf TJA, Wörner HJ, Zhang Z, Bucksbaum PH, Kling MF, Landsman AS, Lucchese RR, Emmanouilidou A, Marinelli A, and Cryan JP
- Abstract
The photoelectric effect is not truly instantaneous but exhibits attosecond delays that can reveal complex molecular dynamics
1-7 . Sub-femtosecond-duration light pulses provide the requisite tools to resolve the dynamics of photoionization8-12 . Accordingly, the past decade has produced a large volume of work on photoionization delays following single-photon absorption of an extreme ultraviolet photon. However, the measurement of time-resolved core-level photoionization remained out of reach. The required X-ray photon energies needed for core-level photoionization were not available with attosecond tabletop sources. Here we report measurements of the X-ray photoemission delay of core-level electrons, with unexpectedly large delays, ranging up to 700 as in NO near the oxygen K-shell threshold. These measurements exploit attosecond soft X-ray pulses from a free-electron laser to scan across the entire region near the K-shell threshold. Furthermore, we find that the delay spectrum is richly modulated, suggesting several contributions, including transient trapping of the photoelectron owing to shape resonances, collisions with the Auger-Meitner electron that is emitted in the rapid non-radiative relaxation of the molecule and multi-electron scattering effects. The results demonstrate how X-ray attosecond experiments, supported by comprehensive theoretical modelling, can unravel the complex correlated dynamics of core-level photoionization., (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2024
- Full Text
- View/download PDF