1. Derivation, external and clinical validation of a deep learning approach for detecting intracranial hypertension.
- Author
-
Gulamali F, Jayaraman P, Sawant AS, Desman J, Fox B, Chang A, Soong BY, Arivazagan N, Reynolds AS, Duong SQ, Vaid A, Kovatch P, Freeman R, Hofer IS, Sakhuja A, Dangayach NS, Reich DS, Charney AW, and Nadkarni GN
- Abstract
Increased intracranial pressure (ICP) ≥15 mmHg is associated with adverse neurological outcomes, but needs invasive intracranial monitoring. Using the publicly available MIMIC-III Waveform Database (2000-2013) from Boston, we developed an artificial intelligence-derived biomarker for elevated ICP (aICP) for adult patients. aICP uses routinely collected extracranial waveform data as input, reducing the need for invasive monitoring. We externally validated aICP with an independent dataset from the Mount Sinai Hospital (2020-2022) in New York City. The AUROC, accuracy, sensitivity, and specificity on the external validation dataset were 0.80 (95% CI, 0.80-0.80), 73.8% (95% CI, 72.0-75.6%), 73.5% (95% CI 72.5-74.5%), and 73.0% (95% CI, 72.0-74.0%), respectively. We also present an exploratory analysis showing aICP predictions are associated with clinical phenotypes. A ten-percentile increment was associated with brain malignancy (OR = 1.68; 95% CI, 1.09-2.60), intracerebral hemorrhage (OR = 1.18; 95% CI, 1.07-1.32), and craniotomy (OR = 1.43; 95% CI, 1.12-1.84; P < 0.05 for all)., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF